Why differential privacy is awesome

差分隐私是一种保护个人数据隐私的方法,通过在数据处理过程中引入随机性,确保即使数据库中包含或不包含某个个体,攻击者也无法确定其存在状态,从而提供强大的隐私保障。

Part of a series on differential privacy. In case you need reading material once you finished this post!

  1. Why differential privacy is awesome (this article) presents a non-technical explanation of the definition.
  2. Differential privacy in (a bit) more detail introduces the formal definition, with very little math.
  3. Differential privacy in practice (easy version) explains how to make simple statistics differentially private.
  4. Almost differential privacy describes how to publish private histograms without knowing the categories in advance.
  5. Local vs. global differential privacy presents the two main models of differential privacy, depending on who the attacker is.
  6. The privacy loss random variable explains the real meaning of (ε,δ)(ε,δ)-differential privacy.

 


Are you following tech- or privacy-related news? If so, you might have heard about differential privacy. The concept is popular both in academic circles and inside tech companies. Both Apple or Google use differential privacy to collect data in a private way.

So, what's this definition about? How is it better than definitions that came before? More importantly, why should you care? What makes it so exciting to researchers and tech companies? In this post, I'll try to explain the idea behind differential privacy and its advantages. I'll do my best to keep it simple and accessible for everyone — not only technical folks.

What it means

Suppose you have a process that takes some database as input, and returns some output.

 

 

This process can be anything. For example, it can be:

  • computing some statistic ("tell me how many users have red hair")
  • an anonymization strategy ("remove names and last three digits of ZIP codes")
  • a machine learning training process ("build a model to predict which users like cats")
  • … you get the idea.

To make a process differentially private, you usually have to modify it a little bit. Typically, you add some randomness, or noise, in some places. What exactly you do, and how much noise you add, depends on which process you're modifying. I'll abstract that part away and simply say that your process is now doing some unspecified ✨ magic ✨.

 

 

Now, remove somebody from your database, and run your new process on it. If the new process is differentially private, then the two outputs are basically the same. This must be true no matter who you remove, and what database you had in the first place.

 

 

By "basically the same", I don't mean "it looks a bit similar". Instead, remember that the magic you added to the process was randomized. You don't always get the same output if you run the new process several times. So what does "basically the same" means in this context? That the probability distributions are similar. You can get the exact same output with database 1 or with database 2, with similar likelihood.

What does this have to do with privacy? Well, suppose you're a creepy person trying to figure out whether your target is in the original data. By looking at the output, you can't be 100% certain of anything. Sure, it could have come from a database with your target in it. But it could also have come from the exact same database, without your target. Both options have a similar probability, so there's not much you can say.

You might have noticed that this definition is not like the ones we've seen before. We're not saying that the output data satisfies differential privacy. We're saying that the process does. This is very different from kk-anonymity and other definitions we've seen. There is no way to look at data and determine whether it satisfies differential privacy. You have to know the process to know whether it is "anonymizing" enough.

And that's about it. It's a tad more abstract than other definitions we've seen, but not that complicated. So, why all the hype? What makes it so awesome compared to older, more straightforward definitions?

Why it's awesome

Privacy experts, especially in academia, are enthusiastic about differential privacy. It was first proposed by Cynthia Dwork, Frank McSherry, Kobbi Nissim and Adam Smith in 20061. Very soon, almost all researchers working on anonymization started building differentially private algorithms. And, as we've already mentioned, tech companies are also trying to use it whenever possible. So, why all the hype? I can count three main reasons.

You no longer need attack modeling

Remember the previous definitions we've seen? (If not, you're fine, just take my word for it :D) Why did we need kk-map in certain cases, and kk-anonymity or δδ-presence in others? To choose the right one, we had to figure out the attacker's capabilities and goals. In practice, this is pretty difficult. You might not know exactly what your attacker is capable of. Worse, there might be unknown unknowns: attack vectors that you hadn't imagined at all. You can't make very broad statements when you use old-school definitions. You have to make some assumptions, which you can't be 100% sure of.

By contrast, when you use differential privacy, you get two awesome guarantees.

  1. You protect any kind of information about an individual. It doesn't matter what the attacker wants to do. Reidentify their target, know if they're in the dataset, deduce some sensitive attribute… All those things are protected. Thus, you don't have to think about the goals of your attacker.
  2. It works no matter what the attacker knows about your data. They might already know some people in the database. They might even add some fake users to your system. With differential privacy, it doesn't matter. The users that the attacker doesn't know are still protected.

You can quantify the privacy loss

We saw that when using kk-anonymity, choosing the parameter kk is pretty tricky. There is no clear link between which kk to choose and how "private" the dataset is. The problem is even worse with other definitions. This problem is present in all other definitions we've seen so far.

Differential privacy is much better. When you use it, you can quantify the greatest possible information gain by the attacker. The corresponding parameter, usually named εε, allows you to make very strong statements. Suppose ε=1.1ε=1.1. Then, you can say: "an attacker who thinks their target is in the dataset with probability 50% can increase their level of certainty to at most 75%."

And do you remember the previous point about attack modeling? It means you can change this statement in many ways. You can replace "their target is is the dataset" by anything about one individual. And you can add "no matter what the attacker knows" if you want to be extra-precise. Altogether, that makes differential privacy much stronger than all definitions that came before.

You can compose multiple mechanisms

Suppose you have some data. You want to share it with Alex and with Brinn, in some anonymized fashion. You trust Alex and Brinn equally, so you use the same definition of privacy for both of them. They are not interested in the same aspects of the data, so you give them two different versions of your data. Both versions are "anonymous", for the definition you've chosen.

What happens if Alex and Brinn decide to conspire, and compare the data you gave them? Will the union of the two anonymized versions still be anonymous? It turns out that for most definitions of privacy, this is not the case. If you put two kk-anonymous versions of the same data together, the result won't be kk-anonymous. So if Alex and Brinn conspire, they might be able to reidentify users on their own… or even reconstruct all the original data! That's definitely not good news.

If you used differential privacy, you get to avoid this type of scenario. Suppose that you gave differentially private data to Alex and Brinn. Each time, you used a parameter of εε. Then if they conspire, the resulting data is still protected by differential privacy, except that the privacy is now weaker: the parameter becomes 2ε2ε. So they gain something, but you still quantify how much information they got. Privacy experts call this property composition.

This scenario sounds a bit far-fetched, but composition is super useful in practice. Organizations often want to do many things with data. Publish statistics, release an anonymized version, train machine learning algorithms… Composition is a way to stay in control of the level of risk as new use cases appear and processes evolve.

Conclusion

I hope the basic intuition behind differential privacy is now clear. Want a one-line summary? Uncertainty in the process means uncertainty for the attacker, which means better privacy.

I also hope that you're now wondering how it actually works! What hides behind this magic that makes everything private and safe? Why does differential privacy have all the awesome properties I've mentioned? What a coincidence! That's the topic of a follow-up article, which tries to give more details while still staying clear of heavy math.


  1. The idea was first proposed in a scientific paper (pdf) presented at TCC 2006, and can also be found in a patent (pdf) filed by Dwork and McSherry in 2005. The name differential privacy seems to have appeared first in an invited paper (pdf) presented at ICALP 2006 by Dwork. 

【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍基于Matlab代码实现的四轴飞行器动力学建模与仿真方法。研究构建了考虑非线性特性的飞行器数学模型,涵盖姿态动力学与运动学方程,实现了三自由度(滚转、俯仰、偏航)的精确模拟。文中详细阐述了系统建模过程、控制算法设计思路及仿真结果分析,帮助读者深入理解四轴飞行器的飞行动力学特性与控制机制;同时,该模拟器可用于算法验证、控制器设计与教学实验。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及无人机相关领域的工程技术人员,尤其适合从事飞行器建模、控制算法开发的研究生和初级研究人员。; 使用场景及目标:①用于四轴飞行器非线性动力学特性的学习与仿真验证;②作为控制器(如PID、LQR、MPC等)设计与测试的仿真平台;③支持无人机控制系统教学与科研项目开发,提升对姿态控制与系统仿真的理解。; 阅读建议:建议读者结合Matlab代码逐模块分析,重点关注动力学方程的推导与实现方式,动手运行并调试仿真程序,以加深对飞行器姿态控制过程的理解。同时可扩展为六自由度模型或加入外部干扰以增强仿真真实性。
基于分布式模型预测控制DMPC的多智能体点对点过渡轨迹生成研究(Matlab代码实现)内容概要:本文围绕“基于分布式模型预测控制(DMPC)的多智能体点对点过渡轨迹生成研究”展开,重点介绍如何利用DMPC方法实现多智能体系统在复杂环境下的协同轨迹规划与控制。文中结合Matlab代码实现,详细阐述了DMPC的基本原理、数学建模过程以及在多智能体系统中的具体应用,涵盖点对点转移、避障处理、状态约束与通信拓扑等关键技术环节。研究强调算法的分布式特性,提升系统的可扩展性与鲁棒性,适用于多无人机、无人车编队等场景。同时,文档列举了大量相关科研方向与代码资源,展示了DMPC在路径规划、协同控制、电力系统、信号处理等多领域的广泛应用。; 适合人群:具备一定自动化、控制理论或机器人学基础的研究生、科研人员及从事智能系统开发的工程技术人员;熟悉Matlab/Simulink仿真环境,对多智能体协同控制、优化算法有一定兴趣或研究需求的人员。; 使用场景及目标:①用于多智能体系统的轨迹生成与协同控制研究,如无人机集群、无人驾驶车队等;②作为DMPC算法学习与仿真实践的参考资料,帮助理解分布式优化与模型预测控制的结合机制;③支撑科研论文复现、毕业设计或项目开发中的算法验证与性能对比。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注DMPC的优化建模、约束处理与信息交互机制;按文档结构逐步学习,同时参考文中提及的路径规划、协同控制等相关案例,加深对分布式控制系统的整体理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值