1.正则化方法:L1和L2 regularization、数据集扩增、dropout 2.深入浅出——搞懂卷积神经网络误差分析(一) 3.《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》阅读笔记与实现 4.CS231n笔记7-ConvNets Typical Architecture与VGGNet 5.caffe笔记之例程学习(三)(专业词汇) 6.基于Python的卷积神经网络和特征提取 7.[caffe]深度学习之图像分类模型AlexNet解读