字符串 13.激光镜像

【问题描述】

      有一个 n×m 的网格,其中包含一些实心单元和一些空心单元。网格左上角的坐标为(1, 1),而右下角的坐标为(nm)。其中有 个实心单元,而其他的则是空心的。这时从坐标为( xsys )的单元中心向四个对角方向之一(也就是东北、西北、东南和西南)的方向发射一个激光束,如果激光束遇到实心单元或网格边缘则形成反射或折射。方式如下(入射角度为NE为例):

       一段时间后,激光束将进入一个死循环,计算在进入死循环之前激光束穿越至少一次的空单元格总数,穿越是指穿过单元中心。

 

【输入形式】

       输入的第一行包含三个整数 n和 (1≤nm≤1000, 0≤k≤1000)。接下来的 k 行每行包含两个整数 xi 和 yi (1≤xin,1≤yim),表示第 i 个实心单元的位置。

       最后一行包含两个整数xs 、 ys (1≤xsn,1≤ysm)以及激光发射方向,分别用"NE"、"NW"、"SE"、"SW"代表东北、西北、东南、西南方向。

【输出形式】

       输出仅有一行一个数字,表示激光束进入死循环之前所穿越过至少一次的空心单元格的总数。
【样例输入1】

3 3 0
1 2 SW

【样例输出1】

6

【样例输入2】

7 5 3
3 3
4 3
5 3
2 1 SE

【样例输出2】

14

【提示】

     可以将 n×m 的网格扩大为(n+2)×(m+2),其中的所有:

                     (0, i), i=0,1,...,m+1单元

                     (j, 0),j=0,1, ..., n+1单元

                     (n+1, i), i=0,1,...,m+1单元

                     (j, m+1), j=0, 1,...,n+1单元

    都可以看做为实心单元。

【评分标准】274E

浅浅发个超时的...

看看有无大佬能帮忙优化一下

#include<bits/stdc++.h>//注:此题数组下标从1开始而不是0,便于计数 
using namespace std;
int main()
{
	string direction;
	int n,m,k;
	int xs,ys;
	cin>>n>>m>>k;
	int Black[n+1][m+1];//记录黑色方块的位置 
	int Cnt[n+1][m+1];//记录激光经过的方块 
	int arr[k][2];
	fill(Black[0],Black[0]+(n+1)*(m+1),0);
	fill(Cnt[0],Cnt[0]+(n+1)*(m+1),0);//将Black和Cnt数组全部归零 
	for(int i=1;i<=k;i++)
	{
		cin>>arr[i][0]>>arr[i][1];
		Black[arr[i][0]][arr[i][1]]++;
	}
	cin>>xs>>ys>>direction;
	Cnt[xs][ys]=1;//先标注起点 
	int Startx=xs,Starty=ys;
	int flagx=Startx,flagy=Starty;
	string flagd=direction;
	while(1)
	{
	//一.-------------------------------------------------------------------- 
	if(direction=="NE")//先确定方向 //皆为单步操作 
	{
		if(Startx>1&&Starty<m)//没到边缘
		{
			if(Black[Startx-1][Starty+1]==1)//斜对角是黑色 
			{
				if((Black[Startx][Starty+1]==1&&Black[Startx-1][Starty]==1)||(Black[Startx][Starty+1]!=1&&Black[Startx-1][Starty]!=1))
				{
					direction=="SW";
				}
				else if(Black[Startx][Starty+1]==1&&Black[Startx-1][Starty]!=1)
				{
					direction=="NW";
					Startx--;
					Cnt[Startx][Starty]++; 
				}
				else if(Black[Startx][Starty+1]!=1&&Black[Startx-1][Starty]==1)
				{
					direction=="SE";
					Starty++;
					Cnt[Startx][Starty]++; 
				}
			}
			else if(Black[Startx-1][Starty+1]!=1)//斜对角为白块
			{
				Startx--;
				Starty++;
				Cnt[Startx][Starty]++;
			} 
		}
		else if(Startx==1&&Starty<m)//碰到上边缘 
		{
			direction="SE";
			Starty++;
			Cnt[Startx][Starty]++;
		}
		else if(Startx>1&&Starty==m)//碰到右边缘 
		{
			direction="NW";
			Startx--;
			Cnt[Startx][Starty]++;
		}
		else if(Startx==1&&Starty==m)//碰到右上方拐角 
		{
			direction="SW";
		}
	}
	//--------------------------------------------------------------------- 
	//二.-------------------------------------------------------------------- 
	else if(direction=="SE")//先确定方向 //皆为单步操作 
	{
		if(Startx<n&&Starty<m)//没到边缘
		{
			if(Black[Startx+1][Starty+1]==1)//斜对角是黑色 
			{
				if((Black[Startx][Starty+1]==1&&Black[Startx+1][Starty]==1)||(Black[Startx][Starty+1]!=1&&Black[Startx+1][Starty]!=1))
				{
					direction=="NW";
				}
				else if(Black[Startx][Starty+1]==1&&Black[Startx+1][Starty]!=1)
				{
					direction=="SW";
					Startx++;
					Cnt[Startx][Starty]++; 
				}
				else if(Black[Startx][Starty+1]!=1&&Black[Startx+1][Starty]==1)
				{
					direction=="NE";
					Starty++;
					Cnt[Startx][Starty]++; 
				}
			}
			else if(Black[Startx+1][Starty+1]!=1)//斜对角为白块
			{
				Startx++;
				Starty++;
				Cnt[Startx][Starty]++;
			} 
		}
		else if(Startx<n&&Starty==m)//碰到右边缘 
		{
			direction="SW";
			Startx++;
			Cnt[Startx][Starty]++;
		}
		else if(Startx==n&&Starty<m)//碰到下边缘 
		{
			direction="NE";
			Starty++;
			Cnt[Startx][Starty]++;
		}
		else if(Startx==n&&Starty==m)//碰到右下方拐角 
		{
			direction="NW";
		}
	}
	//--------------------------------------------------------------------- 
	//三.-------------------------------------------------------------------- 
	else if(direction=="NW")//先确定方向 //皆为单步操作 
	{
		if(Startx>1&&Starty>1)//没到边缘
		{
			if(Black[Startx-1][Starty-1]==1)//斜对角是黑色 
			{
				if((Black[Startx][Starty-1]==1&&Black[Startx-1][Starty]==1)||(Black[Startx][Starty-1]!=1&&Black[Startx-1][Starty]!=1))
				{
					direction=="SE";
				}
				else if(Black[Startx][Starty-1]==1&&Black[Startx-1][Starty]!=1)
				{
					direction=="NE";
					Startx--;
					Cnt[Startx][Starty]++; 
				}
				else if(Black[Startx][Starty-1]!=1&&Black[Startx-1][Starty]==1)
				{
					direction=="SW";
					Starty--;
					Cnt[Startx][Starty]++; 
				}
			}
			else if(Black[Startx-1][Starty-1]!=1)//斜对角为白块
			{
				Startx--;
				Starty--;
				Cnt[Startx][Starty]++;
			} 
		}
		else if(Startx>1&&Starty==1)//碰到左边缘 
		{
			direction="NE";
			Startx--;
			Cnt[Startx][Starty]++;
		}
		else if(Startx==1&&Starty>1)//碰到上边缘 
		{
			direction="SW";
			Starty--;
			Cnt[Startx][Starty]++;
		}
		else if(Startx==1&&Starty==1)//碰到左上方拐角 
		{
			direction="SE";
		}
	}
	//--------------------------------------------------------------------- 
	//四.-------------------------------------------------------------------- 
	else if(direction=="SW")//先确定方向 //皆为单步操作 
	{
		if(Startx<n&&Starty>1)//没到边缘
		{
			if(Black[Startx+1][Starty-1]==1)//斜对角是黑色 
			{
				if((Black[Startx][Starty-1]==1&&Black[Startx+1][Starty]==1)||(Black[Startx][Starty-1]!=1&&Black[Startx+1][Starty]!=1))
				{
					direction=="NE";
				}
				else if(Black[Startx][Starty-1]==1&&Black[Startx+1][Starty]!=1)
				{
					direction=="SE";
					Startx++;
					Cnt[Startx][Starty]++; 
				}
				else if(Black[Startx][Starty-1]!=1&&Black[Startx+1][Starty]==1)
				{
					direction=="NW";
					Starty--;
					Cnt[Startx][Starty]++; 
				}
			}
			else if(Black[Startx+1][Starty-1]!=1)//斜对角为白块
			{
				Startx++;
				Starty--;
				Cnt[Startx][Starty]++;
			} 
		}
		else if(Startx==n&&Starty>1)//碰到下边缘 
		{
			direction="NW";
			Starty--;
			Cnt[Startx][Starty]++;
		}
		else if(Startx<n&&Starty==1)//碰到左边缘 
		{
			direction="SE";
			Startx++;
			Cnt[Startx][Starty]++;
		}
		else if(Startx==n&&Starty==1)//碰到左下方拐角 
		{
			direction="NE";
		}
	}
	//--------------------------------------------------------------------- 
		if(Startx==flagx&&Starty==flagy&&direction==flagd)
		{
			break; 
		}
	}
	int sum=0;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			if(Cnt[i][j]>0)
			{
				sum++;
			}
		}
	}
	cout<<sum<<endl;
	system("pause");
	return 0;
}
#!/bin/env python # -*- coding: utf-8 -*- ################################################# # Author: songwenhua # Function: MI-13自动出具POFV孔口图纸 # Date: 2025-11-18 # v1.00 songwenhua 用户需求号: 2796 任务ID:2110 # LOAD_MODE__ import os import math import re import sys import string import faulthandler faulthandler.enable() from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5 import QtWidgets from py39COM import Gateway, InCAM from py39Tools import TableWidget from messageBox import messageBox from ICO import ICO from ICNET import ICNET from reportlab.pdfgen.canvas import Canvas as ReportCanvas from reportlab.platypus import PageBreak, FrameBreak, Frame, Table, TableStyle from reportlab.platypus.doctemplate import SimpleDocTemplate, PageTemplate, NextPageTemplate from DrawingCreate import DrawingTemplate from reportlab.lib import colors from Gerber2SVG import Origin, Feature from Gerber2Canvas import Gerber2Canvas, Dimension, Direct from reportlab.lib.pagesizes import A4 from reportlab.lib.units import mm from EqHelper import EqHelper import subprocess from ui.params_window import Ui_Form import json class Dr_POFV_Map(QWidget): # A5 = (100*mm, 100*mm) pageSize = (A4[0], A4[1]) # 页面大小 bgTemp: DrawingTemplate # 画PDF的模板类 doc: SimpleDocTemplate drawingVer = '01' # 版本号 drawingParams = dict() # PDF模板参数 canvas: ReportCanvas # 画布 tmpLays = [] # 需要删除的临时层 sigDimension = {} # 图纸编号 MI-13 drawNo = 'MI-13' # str # 铜厚测量图纸 drawName: str = '孔到孔距离标注图纸' workstation = None dirPath = None # 公共盘路径 filePath = None # 文件路径 datLay = None # dat层 datWork = 'dat_copy_work_lay' # dat复制的工作层 coorArr = [] # 坐标序列 def __init__(self): self.JOB = os.environ.get('JOB', None) self.STEP = os.environ.get('STEP', None) INCAM_DEBUG = os.getenv('INCAM_DEBUG', None) if INCAM_DEBUG == 'yes': self.incam = Gateway() self.JOB = self.incam.job_name self.STEP = self.incam.step_name self.pid = self.incam.pid else: self.incam = InCAM() self.pid = os.getpid() self.ico = ICO(incam=self.incam) self.icNet = ICNET(incam=self.incam) self.jobName = self.ico.SimplifyJobName(jobName=self.JOB) self.dbSite = self.ico.GetDBSite(JOB=self.JOB) self.SITE = self.ico.GetSite(JOB=self.JOB) self.layerMatrix = self.ico.GetLayerMatrix() self.step_list = self.ico.GetStepList() self.workStep = self.ico.GetEditList()[0] #得到edit步骤 # 获取基础 workfile 路径:/incam/gz-workfile/ base_work_path = self.ico.GetWorkFilePath() # 注意:不传 mode 或 mode 默认为空 # 构造目标输出目录 target_pdf_dir = os.path.join(base_work_path, 'output', 'pdf', self.jobName) # 确保目录存在 os.makedirs(target_pdf_dir, exist_ok=True) # 设置最终 PDF 输出路径 self.filePath = os.path.join(target_pdf_dir, f"{self.jobName}-MI-13-POFV.pdf") # self.imgPath = os.path.join(base_work_path, 'output', 'laser_image', self.jobName) os.makedirs(self.imgPath, exist_ok=True) self.imgPath = os.path.join(self.imgPath, 'pofv_ring.png') # 网络共享的基础路径(父目录) # base_network_path = '//10.10.80.178/workfile/output/pdf' # base_network_path = '\\\\10.10.80.178\\workfile\\output\\pdf' # job_folder = self.jobName # target_path = os.path.join(base_network_path, job_folder) # 完整目标路径 # basePath = '/tmp' # 默认降级路径 # try: # # 检查基础网络路径是否存在(即 pdf/ 目录) # if not os.path.exists(base_network_path): # raise OSError(f"Base network path does not exist: {base_network_path}") # if not os.path.isdir(base_network_path): # raise OSError(f"Base network path is not a directory: {base_network_path}") # # 尝试创建 jobName 子目录 # os.makedirs(target_path, exist_ok=True) # # 再次确认有写权限 # test_file = os.path.join(target_path, '.test_write') # with open(test_file, 'w') as f: # f.write('test') # os.remove(test_file) # # 如果一切正常,使用网络路径 # basePath = target_path # except Exception as e: # print(f"[WARNING] Cannot use network path: {e}") # messageBox.showDialog( # title='提示', # text=f'无法访问网络路径,将保存至临时目录 (/tmp)。\n错误: {str(e)}', # buttons=['OK'], # defaultButton='OK' # ) # basePath = '/tmp' # # === 设置最终路径 === # self.imgPath = os.path.join(self.ico.GetWorkFilePath(), 'output', 'laser_image', self.jobName) # os.makedirs(self.imgPath, exist_ok=True) # self.imgPath = os.path.join(self.imgPath, 'pofv_ring.png') # self.filePath = os.path.join(basePath, f"{self.jobName}-MI-13-POFV.pdf") self.totalPage = 1 # PDF总页数(外层) # 获取中文用户名 user = self.ico.GetUserName() usList = ICNET.GetCTypeUserInfo('user2CN') self.userCN = user if user in usList: self.userCN = usList[user] self.run() def find_keys_by_start_or_end(self, data, target): """ 查找所有 start 或 end 等于 target 的钻孔层 """ result = [] for key, value in data.items(): if isinstance(value, dict): # 确保是字典 start = value.get('start') end = value.get('end') if start == target or end == target: result.append(key) return result def chk_touch(self, dat_layer, intersect_layer): self.ico.ClearLayer() self.ico.DispWork(dat_layer) # 重置并设置基础过滤器 self.incam.COM("reset_filter_criteria,filter_name=,criteria=all") self.incam.COM("set_filter_type,filter_name=,lines=yes,pads=yes,surfaces=yes,arcs=yes,text=yes") self.incam.COM("set_filter_polarity,filter_name=,positive=yes,negative=yes") # 找到dat层中touch相交层的物体 self.incam.COM(f"sel_ref_feat,layers={intersect_layer},use=filter,mode=touch,pads_as=shape,f_types=line;pad;surface;arc;text,polarity=positive;negative,include_syms=,exclude_syms=") self.incam.COM('get_select_count') selected_features = int(self.incam.COMANS) return selected_features def get_coords(self, feature): """ 从任意图元中快速提取一个坐标(x, y) 特别处理 surface 的 orig 字段 """ # 优先返回已有的 cx/cy pad # all_cor = [] if 'cx' in feature and 'cy' in feature: return round(feature['cx'], 3), round(feature['cy'], 3) # 对于 line 等有 x0/y0 的类型 if 'x0' in feature and 'y0' in feature: return round(feature['x0'], 3), round(feature['y0'], 3) # 处理 surface 的 orig if feature.get('type') == 'surface' and isinstance(feature.get('orig'), list): pattern = r'#O[BS]\s+([-\d.]+)\s+([-\d.]+)' for line in feature['orig']: match = re.search(pattern, line) if match: x = float(match.group(1)) y = float(match.group(2)) return round(x, 3), round(y, 3) # 返回第一个有效坐标即可 return None # 提取SCC_PLUGGING_TYPE值 def get_plugging_type(self, item): return ( item.get("DATA", {}) .get("SCC_PLUGGING_TYPE", "") .strip() .upper() ) def run(self): self.ico.OpenStep(step=self.workStep, job=self.JOB) site = self.ico.GetSite(self.JOB) layerMatrix = self.ico.GetLayerMatrix() sig_out_list = layerMatrix['sigOutLay'] sm_lay_list = layerMatrix['smAllLay'] drill_through = layerMatrix['drlThrough'] helper = EqHelper(self.incam, self.JOB, self.workStep) # pofv_flag = helper.getIsPOFV() raw_data = helper.getDrillData() # print(data) # === 类型自适应解析 === if isinstance(raw_data, str): try: data = json.loads(raw_data) print("成功将 JSON 字符串解析为字典") except json.JSONDecodeError as e: messageBox.showDialog( title='错误', text=f'钻孔数据格式异常,无法解析为JSON。\n详情:{e}', bitmap='error', buttons=['OK'], defaultButton=['OK'] ) sys.exit(1) elif isinstance(raw_data, dict): data = raw_data # 直接使用 # 确保 data 是非空字典 if not data: messageBox.showDialog( title='错误', text='钻孔数据为空', bitmap='error', buttons=['OK'], defaultButton='OK' ) sys.exit(1) # 获取所有值 items = list(data.values()) # 提取第一个最后一个的 SCC_PLUGGING_TYPE first_item = items[0] last_item = items[-1] first_type = self.get_plugging_type(first_item) last_type = self.get_plugging_type(last_item) # 判断是否都是 POFV if not (site == '301' and first_type == "POFV" and last_type == "POFV"): messageBox.showDialog( title='提示', text=f'此板件不需要出具POFV图纸', bitmap='warning', buttons=['OK'], defaultButton='OK' ) sys.exit() # 存储每层处理结果 layer_results = {} tmp_drill_layer = "drill_final" self.ico.CreateOrEmptyLay([tmp_drill_layer]) for i, sig_layer in enumerate(sig_out_list): sm_layer = sm_lay_list[i] matching_layers = self.find_keys_by_start_or_end(drill_through, sig_layer) temp_intersect = f"int_{sig_layer}" # is_front = i == 0 # 假设第一个为正面 if not matching_layers: continue # 清理并创建相交层 if self.ico.IsLayerExist([temp_intersect]): self.ico.DelLayer([temp_intersect]) self.ico.CreateOrEmptyLay([temp_intersect]) self.ico.ClearAll() self.ico.DispWork(layer=sig_layer) self.ico.DispLayer(layer=sm_layer) self.ico.GetLayIntersect(self.workStep, sm_layer, sig_layer, acc=0.01) self.incam.COM(f"matrix_rename_layer,job={self.JOB},matrix=matrix,layer=intersect,new_name={temp_intersect}") self.ico.ClearLayer() self.ico.DispWork(temp_intersect) inter_info = self.ico.GetFeatureFullInfo(self.workStep, layer=temp_intersect) if not inter_info: messageBox.showDialog( title='提示', text=f'{sm_layer} {sig_layer} 没有相交部分', buttons=['OK'], defaultButton='OK' ) self.ico.DelLayer(temp_intersect) continue #开始检测该层是否有有效钻孔匹配 result = { 'has_full_match': False, # 缩小50um后仍匹配 'has_raw_match': False, # 原始匹配 'has_expanded_match': False, # 外扩100um后匹配 'dat_layer': None, 'temp_intersect': temp_intersect } found_in_this_layer = False for dat_layer in matching_layers: # 情况A:检查原始是否 touch selected_features = self.chk_touch(dat_layer, temp_intersect) if selected_features > 0: # 尝试缩小50um shrunk_layer = temp_intersect + '-100' self.ico.ClearLayer() self.ico.DispWork(temp_intersect) self.incam.COM( 'copy_layer, source_job = %s, source_step = %s, source_layer = %s, dest = layer_name, ' 'dest_step =, dest_layer = %s, mode = replace, invert = no, copy_notes = no, ' 'copy_attrs = new_layers_only, copy_sr_feat = no' % ( self.JOB, self.workStep, temp_intersect, shrunk_layer) ) self.ico.ClearLayer() # 缩小50um self.ico.DispWork(shrunk_layer) self.incam.COM("rv_tab_empty,report=resize_rep,is_empty=yes") self.incam.COM("sel_resize,size=-100,corner_ctl=no") self.incam.COM("rv_tab_view_results_enabled,report=resize_rep,is_enabled=no,serial_num=-1,all_count=-1") selected_shrunk = self.chk_touch(dat_layer, shrunk_layer) if selected_shrunk > 0: result['has_full_match'] = True result['dat_layer'] = dat_layer self.ico.DelLayer(shrunk_layer) found_in_this_layer = True break # 成功即退出 dat_layer 循环 else: result['has_raw_match'] = True result['dat_layer'] = dat_layer self.ico.DelLayer(shrunk_layer) #情况B:原始无 touch,尝试外扩+100um else: expanded_layer = temp_intersect + '+100' self.ico.ClearLayer() self.ico.DispWork(temp_intersect) self.incam.COM( 'copy_layer, source_job = %s, source_step = %s, source_layer = %s, dest = layer_name, ' 'dest_step =, dest_layer = %s, mode = replace, invert = no, copy_notes = no, ' 'copy_attrs = new_layers_only, copy_sr_feat = no' % ( self.JOB, self.workStep, temp_intersect, expanded_layer) ) self.ico.ClearLayer() # 外扩50um self.ico.DispWork(expanded_layer) self.incam.COM("rv_tab_empty,report=resize_rep,is_empty=yes") self.incam.COM("sel_resize,size=+100,corner_ctl=no") self.incam.COM("rv_tab_view_results_enabled,report=resize_rep,is_enabled=no,serial_num=-1,all_count=-1") selected_expanded = self.chk_touch(dat_layer, expanded_layer) if selected_expanded > 0: result['has_expanded_match'] = True result['dat_layer'] = dat_layer result['expanded_layer'] = expanded_layer # 保留用于后续复制 found_in_this_layer = True break # 成功即退出 else: self.ico.DelLayer(expanded_layer) # 保存当前层结果 if found_in_this_layer or result['has_raw_match']: layer_results[sig_layer] = result else: self.ico.DelLayer(temp_intersect) # 无任何匹配,清理 # 二、根据收集结果进行最终输出决策 final_copied = False best_sig_layer = None #记录最终要画图的 sig_layer # self.incam.COM(f"affected_layer,name={sig_layer},mode=single,affected=yes") # self.incam.COM(f"affected_layer,name={dat},mode=single,affected=yes") # 1. 优先:正面 缩小50um后有匹配 front_sig = sig_out_list[0] if front_sig in layer_results: res = layer_results[front_sig] if res['has_full_match']: temp = res['temp_intersect'] dat = res['dat_layer'] shrunk = temp + '-100' # 重建并使用缩小层 # self.incam.PAUSE("使用正面缩小") self.ico.ClearLayer() self.ico.DispWork(temp) self.incam.COM( 'copy_layer, source_job = %s, source_step = %s, source_layer = %s, dest = layer_name, ' 'dest_step =, dest_layer = %s, mode = replace, invert = no, copy_notes = no, ' 'copy_attrs = new_layers_only, copy_sr_feat = no' % (self.JOB, self.workStep, temp, shrunk)) self.incam.COM("sel_resize,size=-100,corner_ctl=no") self.chk_touch(dat, shrunk) self.incam.COM(f"sel_copy_other,dest=layer_name,target_layer={tmp_drill_layer},invert=no,dx=0,dy=0,size=0,x_anchor=-1.36612,y_anchor=-1.03115") self.ico.DelLayer(shrunk) final_copied = True best_sig_layer = front_sig # 记录正面 # 2. 背面 缩小50um后有匹配 if not final_copied: for i, sig_layer in enumerate(sig_out_list): if i == 0: continue # 跳过正面 if sig_layer in layer_results: res = layer_results[sig_layer] if res['has_full_match']: temp = res['temp_intersect'] dat = res['dat_layer'] shrunk = temp + '-100' # self.incam.PAUSE("使用背面缩小") self.ico.ClearLayer() self.ico.DispWork(temp) self.incam.COM( 'copy_layer, source_job = %s, source_step = %s, source_layer = %s, dest = layer_name, ' 'dest_step =, dest_layer = %s, mode = replace, invert = no, copy_notes = no, ' 'copy_attrs = new_layers_only, copy_sr_feat = no' % ( self.JOB, self.workStep, temp, shrunk_layer)) self.incam.COM("sel_resize,size=-100,corner_ctl=no") self.chk_touch(dat, shrunk) self.incam.COM(f"sel_copy_other,dest=layer_name,target_layer={tmp_drill_layer},invert=no,dx=0,dy=0,size=0,x_anchor=-1.36612,y_anchor=-1.03115") self.ico.DelLayer(shrunk) final_copied = True best_sig_layer = sig_layer # 记录背面 break # 3. 正面 有原始或外扩匹配(但没有进入缩小成功分支) if not final_copied and front_sig in layer_results: res = layer_results[front_sig] temp = res['temp_intersect'] dat = res['dat_layer'] self.ico.ClearLayer() self.ico.DispWork(temp) if res['has_raw_match']: # self.incam.PAUSE("使用正面原始") self.chk_touch(dat, temp) self.incam.COM(f"sel_copy_other,dest=layer_name,target_layer={tmp_drill_layer},invert=no,dx=0,dy=0,size=0,x_anchor=-1.36612,y_anchor=-1.03115") final_copied = True elif res['has_expanded_match']: # self.incam.PAUSE("使用正面扩大") exp_layer = temp + '+100' self.incam.COM( 'copy_layer, source_job = %s, source_step = %s, source_layer = %s, dest = layer_name, ' 'dest_step =, dest_layer = %s, mode = replace, invert = no, copy_notes = no, ' 'copy_attrs = new_layers_only, copy_sr_feat = no' % ( self.JOB, self.workStep, temp, exp_layer)) self.incam.COM("sel_resize,size=+100,corner_ctl=no") self.chk_touch(dat, exp_layer) self.incam.COM(f"sel_copy_other,dest=layer_name,target_layer={tmp_drill_layer},invert=no,dx=0,dy=0,size=0,x_anchor=-1.36612,y_anchor=-1.03115") self.ico.DelLayer(exp_layer) final_copied = True best_sig_layer = front_sig # # 4. 任意背面 有原始或外扩匹配 if not final_copied: for i, sig_layer in enumerate(sig_out_list): if i == 0: continue if sig_layer in layer_results: res = layer_results[sig_layer] temp = res['temp_intersect'] dat = res['dat_layer'] self.ico.ClearLayer() self.ico.DispWork(temp) if res['has_raw_match']: self.chk_touch(dat, temp) # self.incam.PAUSE("使用背面原始") elif res['has_expanded_match']: # self.incam.PAUSE("使用背面扩大") exp_layer = temp + '+100' self.incam.COM( 'copy_layer, source_job = %s, source_step = %s, source_layer = %s, dest = layer_name, ' 'dest_step =, dest_layer = %s, mode = replace, invert = no, copy_notes = no, ' 'copy_attrs = new_layers_only, copy_sr_feat = no' % ( self.JOB, self.workStep, temp, exp_layer)) self.incam.COM("sel_resize,size=+100,corner_ctl=no") self.chk_touch(dat, exp_layer) self.ico.DelLayer(exp_layer) # self.incam.COM(f"sel_copy_other,dest=layer_name,target_layer={tmp_drill_layer},invert=no,dx=0,dy=0,size=0,x_anchor=-1.36612,y_anchor=-1.03115,subsystem=1-Up-Edit") self.incam.COM(f"sel_copy_other,dest=layer_name,target_layer={tmp_drill_layer},invert=no,dx=0,dy=0,size=0,x_anchor=-1.36612,y_anchor=-1.03115") final_copied = True best_sig_layer = sig_layer # break # 5. 完全失败 if not final_copied: messageBox.showDialog( title='提示', text='此板件不需要出具POFV图纸', bitmap='warning', buttons=['OK'], defaultButton='OK' ) sys.exit() # 清理所有临时层 for sig_layer in sig_out_list: base = f"int_{sig_layer}" self.ico.DelLayer([base, base+'+100']) self.sigDimension[best_sig_layer] = {} self.sigDimension[best_sig_layer]['point_x'] = [] self.sigDimension[best_sig_layer]['point_y'] = [] self.ico.ClearLayer() # 获取要标注的孔坐标(来自 tmp_drill_layer) self.ico.DispWork(tmp_drill_layer) #获取最终孔层的信息,主要是要其中任意一个孔的中心坐标 padList = self.incam.INFO( '-t layer -e %s/%s/%s -m script -d FEATURES -o consider_origin+feat_index+f0' % ( self.JOB, self.workStep, tmp_drill_layer)) for pad in padList: pad.strip() # 3 #P 0.927 1.915 r261 P 1 0 N;.drill=via,.drill_flag=103,.combined_size=0.000000 strList = pad.split() match1 = re.search(r'#(\d+)\s+#P\s+', pad) if match1: midpointX = '%0.3f' % ( float(strList[2])) # 孔盘中点的X坐标 midpointY = '%0.3f' % ( float(strList[3])) # 孔盘中点的Y坐标 self.sigDimension[best_sig_layer]['point_x'].append(midpointX) self.sigDimension[best_sig_layer]['point_y'].append(midpointY) self.ico.ClearLayer() # self.ico.DispWork(sig_layer) # self.ico.DispLayer(sm_layer) # self.ico.DispLayer(dat_layer) self.__renderPDF(best_sig_layer) #在找到的那一层操作,正面或背面 self.ico.DelLayer(self.tmpLays) mes = f'输出目录:{self.filePath},继续将打开PDF' ans = messageBox.showMessage( bitmap='information', title='PDF输出完成', message=mes, buttons=['退出', '继续']) if ans == '继续': os.system(f"/usr/bin/evince {self.filePath} &") self.incam.COM('disp_on') # TODO 转换成png 放到output里面 self.__pdf2PNG() return 0 def __pdf2PNG(self): cmd = f"convert -density 120 -quality 80 -background white -alpha remove {self.filePath} {self.imgPath}" os.system(cmd) def __renderPDF(self, sig_lay): """ 渲染PDF:设置文档结构并构建内容 """ canv = ReportCanvas(self.filePath, pagesize=self.pageSize) self.canvas = canv self.drawingParams = self.__setTemplateParams() # 设置模板的默认参数 self.bgTemp = DrawingTemplate( canv, A4[0], A4[1], self.drawingParams) lM = 0 rM = 0 tM = 0 bM = 0 self.doc = SimpleDocTemplate(self.filePath, pagesize=self.pageSize, topMargin=tM, bottomMargin=bM, leftMargin=lM, rightMargin=rM, title="MI-13", author=self.userCN)#filePath:最终存放路径; pageSize:画布大小 self.__setPageFrame(self.doc) story = [] story.append(NextPageTemplate('p1')) g2c = self.__createGerber(sig_lay) story.append(FrameBreak()) story.append(g2c) story.append(PageBreak()) self.doc.build(story) # def __setPageFrame(self, doc: SimpleDocTemplate): """设置每一页框架分布 """ frames = [] fh = doc.height / 3 padX = self.drawingParams['padx'] padY = self.drawingParams['pady'] tableFrame = Frame(x1=padX, y1=padY + fh * 2, width=doc.width, height=fh, id='f1') gerberFrame = Frame( x1=padX, y1=padY, width=doc.width, height=fh * 2, id='f2') frames.append(tableFrame) frames.append(gerberFrame) doc.addPageTemplates([PageTemplate(id='p1', frames=frames)]) def getMergeLay(self, lay): """ 将lay备份并将备份层合并为surface """ mergeLay = f'{lay}_merge' self.ico.DelLayer(mergeLay) self.ico.ClearAll() self.ico.DispWork(lay, number=1) self.incam.COM( f'sel_copy_other,dest=layer_name,target_layer={mergeLay},invert=no,dx=0,dy=0,size=0,x_anchor=0,y_anchor=0') self.ico.DispWork(mergeLay, number=1) self.incam.COM( 'sel_cont_resize,accuracy=25.4,break_to_islands=yes,island_size=0,hole_size=0,drill_filter=no,corner_ctl=no') return mergeLay # 现在有个要求,如果是在背面,那么用sel_copy_other命令把对应的sig_lay、dat层、sm_lay复制出去,然后将复制后的sig_lay作为work层,并使用命令COM affected_layer,name={},mode=single,affected=yes将另外两个设为影响层,然后sel_all_feat全选,再执行命令COM sel_transform,oper=mirror,x_anchor=3,y_anchor=1.9,angle=0,direction=ccw,x_scale=1,y_scale=1,x_offset=5.1576625,y_offset=10.6256,mode=anchor,duplicate=no将这三层复制层Y镜像。并将镜像后的这三层作为__createGerber函数中画图的层(!只有背面需要这样) def getDnxSigLayMapping(self, lay: str): """ 获取dnx孔层与其钻带的起始信号层之间的映射关系(1:1) :param dnxLayers:线路层 :return:起始终止是线路层的所有钻孔 """ dnxSigLayMapping = [] for drl in self.ico.GetLayerMatrix()['drlAllLay']: startLay = self.ico.GetLayerMatrix()['drlThrough'][drl]['start'] endLay = self.ico.GetLayerMatrix()['drlThrough'][drl]['end'] if startLay == lay or endLay == lay: dnxSigLayMapping.append(drl) return dnxSigLayMapping # 分析创建光绘的关键部分 def __createGerber(self, sigLay): layerMatrix = self.ico.GetLayerMatrix() sig_out_list = layerMatrix['sigOutLay'] sm_lay_list = layerMatrix['smAllLay'] toRead = [] # 1. 合并信号层为 surface mergeSigLay = self.getMergeLay(sigLay) self.tmpLays.append(mergeSigLay) mergeSigLayFilePath = self.ico.getFeatureFile(self.JOB, self.workStep, mergeSigLay) toRead.append(Feature(mergeSigLayFilePath, layerType='signal')) # 2. 添加阻焊层 idx = sig_out_list.index(sigLay) # 合并阻焊层为 surface sm_layer = sm_lay_list[idx] smergLay = self.getMergeLay(sm_layer) self.tmpLays.append(smergLay) maskFilePath = self.ico.getFeatureFile(self.JOB, self.workStep, smergLay) toRead.append(Feature(maskFilePath, layerType='solder_mask')) # 3. 添加钻孔层 drlSet = self.getDnxSigLayMapping(sigLay) for drl in drlSet: drlFilePath = self.ico.getFeatureFile(self.JOB, self.workStep, drl) toRead.append(Feature(drlFilePath, layerType='document')) # 4. 创建高亮圆圈层 highlight_layer = "pofv_highlight_circle" if self.ico.IsLayerExist([highlight_layer]): self.ico.DelLayer([highlight_layer]) self.ico.CreateOrEmptyLay(layer_list=[highlight_layer]) # 获取要高亮的孔坐标(只标第一个) if sigLay not in self.sigDimension or not self.sigDimension[sigLay]['point_x']: # 没有坐标,跳过画圈 pass else: x = float(self.sigDimension[sigLay]['point_x'][0]) y = float(self.sigDimension[sigLay]['point_y'][0]) self.ico.ClearLayer() self.ico.DispWork(highlight_layer) self.incam.COM(f"add_pad,symbol=r180,polarity=positive,x={x},y={y},mirror=no,angle=0,direction=ccw,resize=0,xscale=1,yscale=1") self.incam.COM("sel_feat2outline,width=3.0,location=on_edge,offset=0.1,polarity=as_feature,keep_original=no,text2limit=no")# 轮廓线 self.incam.COM("arc2lines,arc_line_tol=1") self.ico.DelLayer(highlight_layer + '+++') self.ico.ClearLayer() # sys.exit(0) # 高亮层也导出为 Gerber Feature self.tmpLays.append(highlight_layer) # 确保后续清理" hlight_path = self.ico.getFeatureFile(self.JOB, self.workStep, highlight_layer) toRead.append(Feature(hlight_path, layerType='signal', strokeColor = "#fcfcf6")) # === 计算尺寸偏移 === unitSizeX, unitSizeY = self.ico.GetStepSize(self.workStep)[0:2] gbWidth = self.doc.width * 0.6 gbHeigth = self.doc.height * 2 / 3 * 0.6 offsetX = self.getOffsetXY(gbWidth, gbHeigth, unitSizeX, unitSizeY, pagesize=( self.doc.width, self.doc.height * 2 / 3))[0] # 创建绘图对象 g2c = Gerber2Canvas( gbWidth, gbHeigth, unitSizeX, unitSizeY, offsetX, 0.1, Origin.leftdown, self.canvas, toRead, rotate=0 ) # === 添加标注箭头=== dimension = [] if sigLay in self.sigDimension and self.sigDimension[sigLay]['point_x']: pointX = self.sigDimension[sigLay]['point_x'][0] pointY = self.sigDimension[sigLay]['point_y'][0] dimensionSingle = Dimension( x0=unitSizeX / 2, y0=unitSizeY * 1.2, x1=float(pointX), y1=float(pointY), direct=Direct.one_arrow, dist='POFV孔铜厚度测量位置', dimColor="#0400FF", # dimLineColor="#0800FF" # ) dimension.append(dimensionSingle) if dimension: g2c.addDimension(dimension) return g2c @staticmethod def getOffsetXY(gbWidth: float, gbHeight: float, unitSizeX: float, unitSizeY: float, pagesize: tuple = (A4[0], A4[1])): """ 获取使Gerber在PDF中居中显示的偏移量 :param gbWidth: pdf中 gerber宽度 :param gbHeight: pdf中 gerber长度 :param unitSizeX: unit宽 :param unitSizeY: unit长 :param pagesize: PDF宽长 :return: x,y的偏移量 # 创建绘图对象 g2c = Gerber2Canvas(gbWidth,gbHeight,unitSizeX,unitSizeY,offsetX, offsetY, Origin.leftdown,self.canvas,toRead, rotate=0) """ scale1 = math.ceil(gbWidth / unitSizeX) scale2 = math.ceil(gbHeight / unitSizeY) scale = scale1 if scale1 < scale2 else scale2 offsetX = (pagesize[0] - unitSizeX * scale) / (2 * scale) offsetY = (pagesize[1] - unitSizeY * scale) / (2 * scale) return offsetX, offsetY def __setTemplateParams(self): """设置模板的默认参数""" params = {"layer_side": None, "header": "文档密级:内部公开", "footer": "此资料属广芯基板有限公司所有,未经许可,不得扩散.", "note:": "", "tolerance": "", "workstation": "蚀刻开窗-激光钻-电镀-刷板I", "drawing_name": "90874外层最小环宽监控图纸", "jobname": self.jobName, "drawing_no": "MI-13", "drawing_version": self.drawingVer, "units": "mm", "num_page": "", "total_page": self.totalPage, "create": self.userCN, "confirm": "陈伟", "approved": "刘丹洪", "padx": 5 * mm, "pady": 5 * mm, } return params def drawBackground(self, canv: ReportCanvas, doc: SimpleDocTemplate): """ 画页眉页脚用的函数 """ num = canv.getPageNumber() if num == 1: face = 'Unit Top side' else: face = 'Unit Bottom side' params = self.drawingParams params["num_page"] = str(num) params['layer_side'] = face bgTemp = DrawingTemplate(canv, A4[0], A4[1], params) bgTemp.parser() if __name__ == "__main__": app = QApplication(sys.argv) analyzer = Dr_POFV_Map() 直接在这份代码里改
最新发布
12-03
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一二爱上蜜桃猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值