ValueError: Error when checking input: expected input_image_meta to have shape (None, 14) but got ar

本文详细解析了在使用Mask R-CNN进行训练时遇到的常见错误:输入元数据形状不匹配。深入探讨了错误原因及解决方案,指出在增加新类别时需相应调整NUM_CLASSES参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在跑maskrcnn的时候出现以下错误:

Traceback (most recent call last):
  File "/home/ubuntu/DNN_Projection/Mask_RCNN--Training/samples/nucleus/nucleus.py", line 483, in <module>
    train(model, args.dataset, args.subset)
  File "/home/ubuntu/DNN_Projection/Mask_RCNN--Training/samples/nucleus/nucleus.py", line 285, in train
    layers='heads')
  File "/home/ubuntu/DNN_Projection/Mask_RCNN--Training/mrcnn/model.py", line 2375, in train
    use_multiprocessing=True,
  File "/home/ubuntu/anaconda3/envs/tensorflow1.3/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 87, in wrapper
    return func(*args, **kwargs)
  File "/home/ubuntu/anaconda3/envs/tensorflow1.3/lib/python3.6/site-packages/keras/engine/training.py", line 2042, in fit_generator
    class_weight=class_weight)
  File "/home/ubuntu/anaconda3/envs/tensorflow1.3/lib/python3.6/site-packages/keras/engine/training.py", line 1756, in train_on_batch
    check_batch_axis=True)
  File "/home/ubuntu/anaconda3/envs/tensorflow1.3/lib/python3.6/site-packages/keras/engine/training.py", line 1378, in _standardize_user_data
    exception_prefix='input')
  File "/home/ubuntu/anaconda3/envs/tensorflow1.3/lib/python3.6/site-packages/keras/engine/training.py", line 144, in _standardize_input_data
    str(array.shape))
ValueError: Error when checking input: expected input_image_meta to have shape (None, 14) but got array with shape (1, 15)

出现该错误是因为我新增了一类,例:

        self.add_class("nucleus", 1, "RBC")
        self.add_class("nucleus", 2, "ELSE2")

解决办法是修改NUM_CLASSES参数,增加了多少类,就对应的修改对应数值

NUM_CLASSES = 1 + 1  

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LoveWeeknd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值