编辑距离

package com.yihaodian.mandy.keyword.server;


public class EidtDistance {

/*private String target;

public int n;

public void setTarget(String target) {
this.target = target;
this.n = target.length();
}*/

private static int minimum(int a,int b,int c){
int mi;
mi=a;
if(b<mi){
mi=b;
}
if(c<mi){
mi=c;
}
return mi;
}

public static int distance(String s,String t){
int d[][];
int n,m;
int i,j;
char s_i,t_j;
int cost;

n=s.length();
m=t.length();
if(n==0)
return m;
if(m==0)
return n;
d=new int[n+1][m+1];

for(i=0;i<=n;i++)
d[i][0]=i;
for(j=0;j<=m;j++)
d[0][j]=j;

for(i=1;i<=n;i++){
s_i=s.charAt(i-1);
for(j=1;j<=m;j++){
t_j=t.charAt(j-1);
if(s_i==t_j)
cost=0;
else
cost=1;
d[i][j]=minimum(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]+cost);
}
}
return d[n][m];
}

public static double getSimilarity(String target,String other){
int distance = distance(target, other);
int n=Math.max(target.length(), other.length());
return (n-distance)*1.0/n;
}

public static void main(String[] args) {
EidtDistance ed = new EidtDistance();
String str1 = "chenlb.blogjava.net";
String str2 = "chenlb.javaeye.com";
System.out.println("ld=" + ed.distance(str1, str2));
System.out.println("sim=" + ed.getSimilarity(str1, str2));


str1 = "sonyyy";
str2 = "sony";
System.out.println("ld2=" + ed.distance(str1, str2));
System.out.println("sim=" + ed.getSimilarity(str1, str2));

str1 = "leenovo";
str2 = "lenovo";
System.out.println("sim=" + EidtDistance.getSimilarity(str1, str2));

str1 = "adfahjfsd";
str2 = "adidas";
System.out.println("ld=" + ed.distance(str1, str2));
System.out.println("sim=" + ed.getSimilarity(str1, str2));

str1 = "cannon";
str2 = "canon";
System.out.println("sim=" + ed.getSimilarity(str1, str2));

str1 = "sony erricson";
str2 = "sony ericsson";
System.out.println("sim=" + ed.getSimilarity(str1, str2));

str1 = "erricson sony";
str2 = "sony ericsson";
System.out.println("sim=" + ed.getSimilarity(str1, str2));

}
}
Nano-ESG数据资源库的构建基于2023年初至2024年秋季期间采集的逾84万条新闻文本,从中系统提炼出企业环境、社会及治理维度的信息。其构建流程首先依据特定术语在德语与英语新闻平台上检索,初步锁定与德国DAX 40成分股企业相关联的报道。随后借助嵌入技术对文本段落执行去重操作,以降低内容冗余。继而采用GLiNER这一跨语言零样本实体识别系统,排除与目标企业无关的文档。在此基础上,通过GPT-3.5与GPT-4o等大规模语言模型对文本进行双重筛选:一方面判定其与ESG议题的相关性,另一方面生成简明的内容概要。最终环节由GPT-4o模型完成,它对每篇文献进行ESG情感倾向(正面、中性或负面)的判定,并标注所涉及的ESG具体维度,从而形成具备时序特征的ESG情感与维度标注数据集。 该数据集适用于多类企业可持续性研究,例如ESG情感趋势分析、ESG维度细分类别研究,以及企业可持续性事件的时序演变追踪。研究者可利用数据集内提供的新闻摘要、情感标签与维度分类,深入考察企业在不同时期的环境、社会及治理表现。此外,借助Bertopic等主题建模方法,能够从数据中识别出与企业相关的核心ESG议题,并观察这些议题随时间的演进轨迹。该资源以其开放获取特性与连续的时间覆盖,为探究企业可持续性表现的动态变化提供了系统化的数据基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值