Longest Ordered Subsequence
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 40736 | Accepted: 17942 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN)
be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence
(1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
求最长上升子序列
调用函数
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int n,a[1010],i,t,r;
while(scanf("%d",&n)!=EOF)
{
scanf("%d",&a[0]);
int top=0;
for(i=1;i<n;i++)
{
scanf("%d",&t);
if(t>a[top])
a[++top]=t;
else
{
int r=upper_bound(a,a+top,t)-a;
a[r]=t;
}
}
printf("%d\n",top+1);
}
return 0;
}二分法:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int n,i,j,r,l,a[1011],t;
while(scanf("%d",&n)!=EOF)
{
scanf("%d",&a[0]);
int top=0;
for(i=1;i<n;i++)
{
scanf("%d",&t);
if(t>a[top])
a[++top]=t;
else
{
int l=0,r=top;
while(r>=l)
{
int mid=(l+r)/2;
if(a[mid]<t)
l=mid+1;
else
r=mid-1;
}
a[l]=t;
}
}
printf("%d\n",top+1);
}
return 0;
}

本文介绍了一种寻找给定数列中最长上升子序列长度的高效算法,通过使用二分查找的方法来优化解决方案,适用于序列长度不超过1000的情况。
641

被折叠的 条评论
为什么被折叠?



