Text Justification leetcode

本文介绍了一个文本对齐算法,该算法能够将给定的一组单词按照指定长度进行左对齐和右对齐处理,确保每行字符数固定,并均匀分布单词间的空格。特别地,文章还讨论了如何处理无法整除的空格数以及最后一行的特殊处理方式。

Text Justification

Apr 3 '12

3100 / 15986

Given an array of words and a length L, format the text such that each line has exactly L characters and is fully (left and right) justified.

You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad extra spaces ' ' when necessary so that each line has exactly L characters.

Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line do not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on the right.

For the last line of text, it should be left justified and no extra space is inserted between words.

For example,
words:
["This", "is", "an", "example", "of", "text", "justification."]
L:
16.

Return the formatted lines as:

[

   "This    is    an",

   "example  of text",

   "justification.  "

]


Note: Each word is guaranteed not to exceed L in length.



,大体思路ok了,细节仍有错误


package String;  

import java.util.ArrayList;

/** 
 * @Title: Text_Just.java 
 * @Package String 
 * @Description: TODO
 * @author nutc
 * @date 2013-9-6 上午9:50:57 
 * @version V1.0 
 */
public class Text_Just {
	
	public static void main(String args[]){
		Text_Just t = new Text_Just();
		String[] s = {"a","b","c","d","e"};
		ArrayList<String> list = t.fullJustify(s, 3);
		System.out.println(list);
	}
	    public ArrayList<String> fullJustify(String[] words, int L) {


	        if(words==null||words.length==0) return null;
	        ArrayList<String> list = new ArrayList<String>();
	        
	        
	        int i=0,j=0,now = 0;
	        while(i<words.length){
	            j = i;
	            now = 0;
	            now += words[i].length();
	            while(++i<words.length && (words[i].length()+1+now)<=L){
	                now += words[i].length()+1;//保证两个
	            }
	            i--; //i  还是要剪掉的!
	            if(i==j){
	                StringBuilder sb = new StringBuilder(words[i]);
	                for(int k=1;k<=L-now;k++)
	                    sb.append(" ");
	                list.add(sb.toString());
	            }else{
	                int divide = (L-now+(i-j))/(i-j);
	                int add = (L-now+(i-j))%(i-j);
	                StringBuilder sb = new StringBuilder(words[j]);
	                for(int k = 1;k<=(divide+add);k++){
	                    sb.append(" ");
	                }
	                for(int k=j+1;k<i;k++){
	                    sb.append(words[k]);
	                    for(int m = 1;m<=divide;m++){
	                        sb.append(" ");
	                    }
	                }
	                sb.append(words[i]);
	                list.add(sb.toString());
	            }
	            i++;
	        }
	        return list;
	        
	    }
}
 


【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值