全流程透明双语大语言模型MAP-Neo,4.5T 高质量数据训练

前言

近年来,大语言模型 (LLM) 已经成为人工智能领域最热门的研究方向之一,并在各种任务中展现出前所未有的性能。然而,由于商业利益的驱动,许多最具竞争力的模型,例如 GPT、Gemini 和 Claude,其训练细节和数据来源往往被隐藏在专有接口背后。这限制了学术界对 LLM 的深入研究和应用。

为了解决这一问题,研究团队开源了 MAP-Neo,一个高性能、透明的双语大语言模型,旨在推动 LLM 研究的民主化。MAP-Neo 拥有 70 亿参数,从头开始训练,并使用了 4.5T 经过精心清洗和筛选的高质量 token。

  • Huggingface模型下载:https://huggingface.co/m-a-p/neo_7b

  • AI快站模型免费加速下载:https://aifasthub.com/models/m-a-p

技术特点

MAP-Neo 的透明性和高性能源于其独特的设计和训练策略:

  • 全流程透明: 与现有许多开源 LLM 不同,MAP-Neo 秉持着完全透明的理念,不仅公开了模型权重,还提供了完整的训练代码、预训练数据以及数据清洗流程,方便研究人员复现和验证模型。

  • 高质量数据训练:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值