三、搜索和二分 [Cloned] K - 搜索

本文介绍了一个算法问题,即计算由指定位置的X字符所代表的图像的周长。该问题通过深度优先搜索来解决,同时定义了如何计算图像的边界长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题:

Technicians in a pathology lab analyze digitized images of slides. Objects on a slide are selected for analysis by a mouse click on the object. The perimeter of the boundary of an object is one useful measure. Your task is to determine this perimeter for selected objects. 

The digitized slides will be represented by a rectangular grid of periods, '.', indicating empty space, and the capital letter 'X', indicating part of an object. Simple examples are 

XX   Grid 1       .XXX   Grid 2 

XX                .XXX 

                  .XXX 

                  ...X 

                  ..X. 

                  X... 


An X in a grid square indicates that the entire grid square, including its boundaries, lies in some object. The X in the center of the grid below is adjacent to the X in any of the 8 positions around it. The grid squares for any two adjacent X's overlap on an edge or corner, so they are connected. 

XXX 

XXX    Central X and adjacent X's 

XXX 


An object consists of the grid squares of all X's that can be linked to one another through a sequence of adjacent X's. In Grid 1, the whole grid is filled by one object. In Grid 2 there are two objects. One object contains only the lower left grid square. The remaining X's belong to the other object. 

The technician will always click on an X, selecting the object containing that X. The coordinates of the click are recorded. Rows and columns are numbered starting from 1 in the upper left hand corner. The technician could select the object in Grid 1 by clicking on row 2 and column 2. The larger object in Grid 2 could be selected by clicking on row 2, column 3. The click could not be on row 4, column 3. 


One useful statistic is the perimeter of the object. Assume each X corresponds to a square one unit on each side. Hence the object in Grid 1 has perimeter 8 (2 on each of four sides). The perimeter for the larger object in Grid 2 is illustrated in the figure at the left. The length is 18. 

Objects will not contain any totally enclosed holes, so the leftmost grid patterns shown below could NOT appear. The variations on the right could appear: 

Impossible   Possible 



XXXX         XXXX   XXXX   XXXX 

X..X         XXXX   X...   X... 

XX.X         XXXX   XX.X   XX.X 

XXXX         XXXX   XXXX   XX.X 



.....        .....  .....  ..... 

..X..        ..X..  ..X..  ..X.. 

.X.X.        .XXX.  .X...  ..... 

..X..        ..X..  ..X..  ..X.. 

.....        .....  .....  ..... 

题意:

woc这题好长,题意是给出一个矩阵,然后给出一个X 的位置,找出与这个X八个方向相邻的所有X组成的图形的周长。

题解:

搜索X不是很难,但是怎么表示周长有点难度,借鉴了一篇博客,就是图形(内)边如果被两个X包围那么周长为2,不然周长为1。别的就是各个方向上的深搜了没什么好说的。(困死了不行了十二点了)

代码:AC

#include<iostream>
#include<cstring>
#define MAXN 30
using namespace std;

char _m[MAXN][MAXN];
bool mark[MAXN][MAXN];
int dir_f[4][2] = {0,1,0,-1,1,0,-1,0};
int dir_l[4][2] = {1,1,1,-1,-1,1,-1,-1};
int ans;
int r;
int c;
void DFS(int g_i,int g_j);
int main()
{
    int i;
    int j;
    int g_r;
    int g_c;
    while(cin>>r>>c>>g_r>>g_c)
    {
        memset(mark,false,sizeof(mark));
        if(!r && !c && !g_r && !g_c)
        {
            break;
        }
        for(i = 0; i < r; ++ i)
        {
            for(j = 0; j < c; ++ j)
            {
                cin>>_m[i][j];
            }
        }
        -- g_r;
        -- g_c;
        ans = 0;
        mark[g_r][g_c] = true;
        DFS(g_r,g_c);
        cout<<ans<<endl;
    }
}

void DFS(int g_i,int g_j)
{
    int i;
    int j;
    int tem_i;
    int tem_j;
    for(i = 0; i < 4; ++ i)
    {
        if(dir_f[i][0] + g_i >= 0 && dir_f[i][0] + g_i < r && dir_f[i][1] + g_j>= 0 && dir_f[i][1] + g_j < c && _m[dir_f[i][0] + g_i][dir_f[i][1] + g_j] == 'X' && !mark[dir_f[i][0] + g_i][dir_f[i][1] + g_j])
        {
            mark[dir_f[i][0] + g_i][dir_f[i][1] + g_j] = true;
            DFS(dir_f[i][0] + g_i,dir_f[i][1] + g_j);
        }
        else if(!mark[dir_f[i][0] + g_i][dir_f[i][1] + g_j])
        {
            ++ ans;
        }
    }
    for(i = 0; i < 4; ++ i)
    {
        tem_i = dir_l[i][0] + g_i;
        tem_j = dir_l[i][1] + g_j;
        if(tem_i >= 0 && tem_i < r && tem_j >= 0 && tem_j < c && _m[tem_i][tem_j] == 'X' && !mark[tem_i][tem_j])
        {
            mark[tem_i][tem_j] = true;
            DFS(tem_i,tem_j);
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值