poj 1328 Radar Installation

解决如何用最少数量的雷达覆盖所有岛屿的问题,通过排序及贪心算法实现,判断每个岛屿是否在雷达覆盖范围内。

Radar Installation

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 90543 Accepted: 20340
Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros
Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. “-1” installation means no solution for that case.
Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0
Sample Output

Case 1: 2
Case 2: 1


题意:给出n个岛屿,雷达的扫描范围m,找出最少需要多少个雷达才能覆盖这些岛屿(要使得尽可能覆盖,雷达肯定会在x轴上),不能覆盖完全输出“-1”。


贪心,一开始就想到对岛的x排序,然后使得雷达的扫描范围圈尽量往右靠(岛在雷达扫描圈上),但是当第一个岛在第一个雷达扫描范围时,扫不到第二个岛的情况下,如果使得第二个岛在第一个雷达扫描圈上时,第一个岛能被第一个雷达扫到,就会wa了。
所以还得判断:从新的雷达开始判断的第二个或者之后的岛在圈上的情况(之后的岛的x坐标小于初始雷达位置的圆心x坐标)


说了一堆乱七八糟的,直接代码


#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 1005
#define inf 0x3f3f3f3f
struct node{
    int x, y;
}nod[N];
bool cmp( const node &a1, const node &a2 )
{
    if( a1.x != a2.x )
        return a1.x < a2.x;
    else
        return a1.y < a2.y;
}
int main()
{
    //freopen( "in.txt", "r", stdin );
    int n, m, sum, flg, cas = 1;
    while( scanf( "%d%d", &n, &m ) != EOF ){
        if( n == 0 && m == 0 ) break;
        for( int i = 0 ; i < n ; i ++ ){
            scanf( "%d%d", &nod[i].x, &nod[i].y );
            //cout<<nod[i].x<<" "<<nod[i].y<<endl;
        }
        sort( nod, nod+n, cmp );
//        for( int i = 0 ; i < n ; i ++ ){
//            cout<<nod[i].x<<" "<<nod[i].y<<endl;
//        }
        flg = sum = 0;
        int left = inf;///初始化雷达的岛的x坐标
        double cir = inf;///圆心x坐标
        for( int i = 0 ; i < n ; i ++ ){
            if( nod[i].y > m ) flg = 1;
            if( cir == inf ){
                cir = nod[i].x + sqrt((double)m*m-nod[i].y*nod[i].y);
                left = i;
                sum ++;///雷达数量
            }
            else if( m*m < (double)nod[i].y*nod[i].y + (cir-nod[i].x)*(cir-nod[i].x) ){
            ///判断岛是否在雷达扫描范围内
                if( cir > nod[i].x ){
                    cir = nod[i].x + sqrt((double)m*m-nod[i].y*nod[i].y);
///之后的岛确定的雷达还能扫到前面的岛的时候就不用从这个岛接着判断
                        i --;
                        cir = inf;
                        left = inf;
                    }
                }
                else{
                    i --;
                    cir = inf;
                    left = inf;
                }
            }
        }
        cout<<"Case "<<cas++<<": ";
        if( flg ){
            cout<<"-1"<<endl;
        }
        else if( !sum ){///这里应该可以去掉
            cout<<1<<endl;
        }
        else cout<<sum<<endl;
    }
    return 0;
}
【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值