第三专题总结

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。

常见的动态规划有

类斐波那契数列问题,指特征方程类似于 f(n) = f(n-1) + f(n-2),的问题,此类问题最直观的题就是斐波那契数列,稍微难一点的就是跳楼问题,和堆砖头问题,这两个题虽然看起来与斐波那契没什么关系,但是经过分析和转化之后,就可以转化为该类型。总的来说,类斐波那契数列问题是这套专题里最简单的问题,只要做会了几个典型,其他的就很简单了。

 

01背包,一般描述为给定背包的容积,一些物品的价值和体积,求能放入背包中的物品的最大价值,一个比较通用的公式为f[i, j] = max( f[i-1, j-Wi] + Pi (j >=Wi), f[i-1, j] ),这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

 

完全背包,这个问题非常类似于01背包问题,所不同的是每种物品有无限件,也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……取[V/c]件等很多种。

 

最大公共子序列,又称LCS,由于上课老师没有讲过,便自己学习了一下,这类问题一般描述为给定一定个字符串,求出个个串最长的公共子序列的长度,这种问题的解决思路很巧妙,用一个矩阵,行和列每个格子代表一个字符,分别表示出两个字符串,如图,引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j],即问题的解。


源码来自:https://pan.quark.cn/s/7a757c0c80ca 《在Neovim中运用Lua的详尽教程》在当代文本编辑器领域,Neovim凭借其卓越的性能、可扩展性以及高度可定制的特点,赢得了程序开发者的广泛青睐。 其中,Lua语言的融入更是为Neovim注入了强大的活力。 本指南将深入剖析如何在Neovim中高效地运用Lua进行配置和插件开发,助你充分发挥这一先进功能的潜力。 一、Lua为何成为Neovim的优选方案经典的Vim脚本语言(Vimscript)虽然功能完备,但其语法结构与现代化编程语言相比显得较为复杂。 与此形成对比的是,Lua是一种精简、轻量且性能卓越的脚本语言,具备易于掌握、易于集成的特点。 因此,Neovim选择Lua作为其核心扩展语言,使得配置和插件开发过程变得更加直观和便捷。 二、安装与设置在Neovim中启用Lua支持通常十分简便,因为Lua是Neovim的固有组件。 然而,为了获得最佳体验,我们建议升级至Neovim的最新版本。 可以通过`vim-plug`或`dein.vim`等包管理工具来安装和管理Lua插件。 三、Lua基础在着手编写Neovim的Lua配置之前,需要对Lua语言的基础语法有所掌握。 Lua支持变量、函数、控制流、表(类似于数组和键值对映射)等核心概念。 它的语法设计简洁明了,便于理解和应用。 例如,定义一个变量并赋值:```lualocal myVariable = "Hello, Neovim!"```四、Lua在Neovim中的实际应用1. 配置文件:Neovim的初始化文件`.vimrc`能够完全采用Lua语言编写,只需在文件首部声明`set runtimepath^=~/.config/nvim ini...
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不使用机械式位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估算与控制。文中结合STM32 F4高性能微控制器平台,采用如滑模观测器(SMO)、扩展卡尔曼滤波(EKF)或高频注入法等先进观测技术,实现对电机反电动势或磁链的实时估算,进而完成磁场定向控制(FOC)。研究涵盖了控制算法设计、系统建模、仿真验证(可能使用Simulink)以及在嵌入式平台上的代码实现与实验测试,旨在提高电机驱动系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电机控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师;熟悉C语言和MATLAB/Simulink工具者更佳。; 使用场景及目标:①为永磁同步电机驱动系统在高端制造、新能源汽车、家用电器等领域提供无位置传感器解决方案的设计参考;②指导开发者在STM32平台上实现高性能FOC控制算法,掌握位置观测器的设计与调试方法;③推动电机控制技术向低成本、高可靠方向发展。; 其他说明:该研究强调理论与实践结合,不仅包含算法仿真,还涉及实际硬件平台的部署与测试,建议读者在学习过程中配合使用STM32开发板和PMSM电机进行实操验证,以深入理解控制策略的动态响应与鲁棒性问题。
先看效果: https://pan.quark.cn/s/21391ce66e01 企业级办公自动化系统,一般被称为OA(Office Automation)系统,是企业数字化进程中的关键构成部分,旨在增强组织内部的工作效能与协同水平。 本资源提供的企业级办公自动化系统包含了详尽的C#源代码,涉及多个技术领域,对于软件开发者而言是一份极具价值的参考资料。 接下来将具体介绍OA系统的核心特性、关键技术以及在实践操作中可能涉及的技术要点。 1. **系统构造** - **三层构造**:大型OA系统普遍采用典型的三层构造,包含表现层、业务逻辑层和数据访问层。 这种构造能够有效分离用户交互界面、业务处理过程和数据存储功能,从而提升系统的可维护性与可扩展性。 2. **C#编程语言** - **C#核心**:作为开发语言,C#具备丰富的类库和语法功能,支持面向对象编程,适用于开发复杂的企业级应用。 - **.NET Framework**:C#在.NET Framework环境中运行,该框架提供了大量的类库与服务,例如ASP.NET用于Web开发,Windows Forms用于桌面应用。 3. **控件应用** - **WinForms**或**WPF**:在客户端,可能会使用WinForms或WPF来设计用户界面,这两者提供了丰富的控件和可视化设计工具。 - **ASP.NET Web Forms/MVC**:对于Web应用,可能会使用ASP.NET的Web Forms或MVC模式来构建交互式页面。 4. **数据库操作** - **SQL Server**:大型OA系统通常采用关系型数据库管理系统,如SQL Server,用于存储和处理大量数据。 - **ORM框架**:如Ent...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值