keras pytorch 构建模型对比

使用CIFAR10数据集,用三种框架构建Residual_Network作为例子,比较框架间的异同。

数据集格式

pytorch的数据集格式

import torch
import torch.nn as nn
import torchvision

# Download and construct CIFAR-10 dataset.
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                             train=True, 
                                             download=True)

# Fetch one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size()) # torch.Size([3, 32, 32])
print (label) # 6
print (train_dataset.data.shape) # (50000, 32, 32, 3)
# type(train_dataset.targets)==list
print (len(train_dataset.targets)) # 50000

# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=64, 
                                           shuffle=True)
"""
# 演示DataLoader返回的数据结构
# When iteration starts, queue and thread start to load data from files.
data_iter = iter(train_loader)

# Mini-batch images and labels.
images, labels = data_iter.next()
print(images.shape) # torch.Size([100, 3, 32, 32])
print(labels.shape) 
# torch.Size([100]) 可见经过DataLoader后,labels由list变成了pytorch内置的tensor格式
"""
# 一般使用的话是下面这种
# Actual usage of the data loader is as below.
for images, labels in train_loader:
    # Training code should be written here.
    pass

keras的数据格式

import keras
from keras.datasets import cifar10

(train_x, train_y) , (test_x, test_y) = cifar10.load_data()
print(train_x.shape) # ndarray 类型: (50000, 32, 32, 3)
print(train_y.shape) # (50000, 1)

输入网络的数据格式不同

"""
1: pytorch 都是内置torch.xxTensor输入网络,而keras的则是原生ndarray类型
2: 对于multi-class的其中一种loss,即cross-entropy loss 而言,
   pytorch的api为 CorssEntropyLoss, 但y_true不能用one-hoe编码!这与keras,tensorflow	       都不同。tensorflow相应的api为softmax_cross_entropy
   他们的api都仅限于multi-class classification
3*: 其实上面提到的api都属于categorical cross-entropy loss,
    又叫 softmax loss,是函数内部先进行了 softmax 激活,再经过cross-entropy loss。
    这个loss是cross-entropy loss的变种,
    cross-entropy loss又叫logistic loss 或 multinomial logistic loss。
    实现这种loss的函数不包括激活函数,需要自定义。
    pytorch对应的api为BCEloss(仅限于 binary classification),
    tensorflow 对应的api为 log_loss。
    cross-entropy loss的第二个变种是 binary cross-entropy loss 又叫 sigmoid cross-    entropy loss。
    函数内部先进行了sigmoid激活,再经过cross-entropy loss。
    pytorch对应的api为BCEWithLogitsLoss,
    tensorflow对应的api为sigmoid_cross_entropy
"""

# pytorch
criterion = nn.CrossEntropyLoss()
...
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        # 对于multi-class cross-entropy loss
        # 输入y_true不需要one-hot编码
        loss = criterion(outputs, labels)
...

# keras
# 对于multi-class cross-entropy loss
# 输入y_true需要one-hot编码
train_y = keras.utils.to_categorical(train_y,10)
...
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
                    validation_data=[test_x,test_y],
                    epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1)
...

整体流程

keras 流程

model = myModel()
model.compile(optimizer=Adam(0.001),loss="categorical_crossentropy",metrics=["accuracy"])
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
                    validation_data=[test_x,test_y],
                    epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1, workers=4)
#Evaluate the accuracy of the test dataset
accuracy = model.evaluate(x=test_x,y=test_y,batch_size=128)
# 保存整个网络
model.save("cifar10model.h5")
"""
# https://blog.youkuaiyun.com/jiandanjinxin/article/details/77152530
# 使用
# keras.models.load_model("cifar10model.h5")

# 只保存architecture
# json_string = model.to_json()  
# open('my_model_architecture.json','w').write(json_string)   
# 使用
# from keras.models import model_from_json
#model = model_from_json(open('my_model_architecture.json').read())  

# 只保存weights
# model.save_weights('my_model_weights.h5') 
#需要在代码中初始化一个完全相同的模型 
# model.load_weights('my_model_weights.h5')
#需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,可以通过层名字来加载模型  
# model.load_weights('my_model_weights.h5', by_name=True)
"""

pytorch 流程

model = myModel()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
		# 将上次迭代计算的梯度值清0
        optimizer.zero_grad()
        # 反向传播,计算梯度值
        loss.backward()
        # 更新权值参数
        optimizer.step()
       
# model.eval(),让model变成测试模式,对dropout和batch normalization的操作在训练和测试的时候是不一样的
# eval()时,pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。
# 不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值