一、信号
信号是 Linux 进程间通信的最古老的方式之一,是事件发生时对进程的通知机制,有时也称之为软件中断,它是在软件层次上对中断机制的一种模拟,是一种异步通信的方式。
信号由内核发送给进程,可以导致一个正在运行的进程被另一个正在运行的异步进程中断,转而处理某一个突发事件。
发往进程的诸多信号,通常都是源于内核。引发内核为进程产生信号的各类事件如下:
①对于前台进程,用户可以通过输入特殊的终端字符来给它发送信号。比如输入Ctrl+C 通常会给进程发送一个中断信号。
②硬件发生异常,即硬件检测到一个错误条件并通知内核,随即再由内核发送相应信号给相关进程。比如执行一条异常的机器语言指令,诸如被 0 除,或者引用了无法访问的内存区域。
③系统状态变化,比如 alarm 定时器到期将引起 SIGALRM 信号,进程执行的 CPU 时间超限,或者该进程的某个子进程退出。
④运行 kill 命令或调用 kill 函数。
使用信号的两个主要目的是:
让进程知道已经发生了一个特定的事情。
强迫进程执行它自己代码中的信号处理程序。
信号的特点:
简单
不能携带大量信息
满足某个特定条件才发送
优先级比较高
系统定义的信号如下:
前 31 个信号为常规信号,其余为实时信号。
**查看系统定义的信号列表:**kill –l
**查看信号的详细信息:**man 7 signal
信号的 5 种默认处理动作:
Term 终止进程
Ign 当前进程忽略掉这个信号
Core 终止进程,并生成一个Core文件(保存进程异常退出的一些错误信息)
Stop 暂停当前进程
Cont 继续执行当前被暂停的进程
信号的几种状态:
产生、未决:信号处理函数还没有执行、递达
SIGKILL 和 SIGSTOP 信号不能被捕捉、阻塞或者忽略,只能执行默认动作。
Ctrl + c 产生SIGINT
Ctrl + \ 产生SIGQUIT
Ctrl + z 产生SIGSTOP
二、信号相关函数
#include <sys/types.h>
#include <signal.h>
kill:
int kill(pid_t pid, int sig);
- 功能:给任何的进程或者进程组pid, 发送任何的信号 sig
- 参数:
- pid:需要发送给的进程的id
> 0 : 将信号发送给指定的进程
= 0 : 将信号发送给当前的进程组
= -1 : 将信号发送给每一个有权限接收这个信号的进程
< -1 : 这个pid=某个进程组的ID取反 (-12345)
- sig : 需要发送的信号的编号或者宏值,0表示不发送任何信号
kill(getppid(), 9);
kill(getpid(), 9);
raise:
int raise(int sig);
- 功能:给当前进程发送信号
- 参数:
- sig : 要发送的信号
- 返回值:
- 成功 0
- 失败 非0
abort:
void abort(void);
- 功能: 发送SIGABRT信号给当前的进程,杀死当前进程
kill(getpid(), SIGABRT);
alarm:
#include <unistd.h>
unsigned int alarm(unsigned int seconds);
- 功能:设置定时器(闹钟)。函数调用,开始倒计时,当倒计时为0的时候,函数会给当前的进程发送一个信号:SIGALARM
- 参数:
seconds: 倒计时的时长,单位:秒。如果参数为0,定时器无效(不进行倒计时,不发信号)。
取消一个定时器,通过alarm(0)。
- 返回值:
- 之前没有定时器,返回0
- 之前有定时器,返回之前的定时器剩余的时间
SIGALARM :默认终止当前的进程,每一个进程都有且只有唯一的一个定时器。
alarm(10); -> 返回0
过了1秒
alarm(5); -> 返回9
定时函数settimer:
#include <sys/time.h>
int setitimer(int which, const struct itimerval *new_value, struct itimerval *old_value);
- 功能:设置定时器(闹钟)。可以替代alarm函数。精度微妙us,可以实现周期性定时
- 参数:
- which : 定时器以什么时间计时
ITIMER_REAL: 真实时间,时间到达,发送 SIGALRM 常用
ITIMER_VIRTUAL: 用户时间,时间到达,发送 SIGVTALRM
ITIMER_PROF: 以该进程在用户态和内核态下所消耗的时间来计算,时间到达,发送 SIGPROF
- new_value: 设置定时器的属性
struct itimerval { // 定时器的结构体
struct timeval it_interval; // 每个阶段的时间,间隔时间
struct timeval it_value; // 延迟多长时间执行定时器
};
struct timeval { // 时间的结构体
time_t tv_sec; // 秒数
suseconds_t tv_usec; // 微秒
};
- old_value :记录上一次的定时的时间参数,一般不使用,指定NULL
- 返回值:
成功 0
失败 -1 并设置错误号
三、信号捕捉函数
signal函数:
#include <signal.h>
typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);
- 功能:设置某个信号的捕捉行为
- 参数:
- signum: 要捕捉的信号
- handler: 捕捉到信号要如何处理
- SIG_IGN : 忽略信号
- SIG_DFL : 使用信号默认的行为
- 回调函数 : 这个函数是内核调用,程序员只负责写,捕捉到信号后如何去处理信号。
- 返回值:
成功,返回上一次注册的信号处理函数的地址。第一次调用返回NULL
失败,返回SIG_ERR,设置错误号
SIGKILL SIGSTOP不能被捕捉,不能被忽略。
sigaction函数:
#include <signal.h>
int sigaction(int signum, const struct sigaction *act,struct sigaction *oldact);
- 功能:检查或者改变信号的处理。信号捕捉
- 参数:
- signum : 需要捕捉的信号的编号或者宏值(信号的名称)
- act :捕捉到信号之后的处理动作
- oldact : 上一次对信号捕捉相关的设置,一般不使用,传递NULL
- 返回值:
成功 0
失败 -1
struct sigaction {
// 函数指针,指向的函数就是信号捕捉到之后的处理函数
void (*sa_handler)(int);
// 不常用
void (*sa_sigaction)(int, siginfo_t *, void *);
// 临时阻塞信号集,在信号捕捉函数执行过程中,临时阻塞某些信号。
sigset_t sa_mask;
// 使用哪一个信号处理对捕捉到的信号进行处理
// 这个值可以是0,表示使用sa_handler,也可以是SA_SIGINFO表示使用sa_sigaction
int sa_flags;
// 被废弃掉了
void (*sa_restorer)(void);
};
内核实现信号捕捉的过程:
四、信号集
许多信号相关的系统调用都需要能表示一组不同的信号,多个信号可使用一个称之为信号集的数据结构来表示,其系统数据类型为 sigset_t。
在 PCB 中有两个非常重要的信号集。一个称之为 “阻塞信号集” ,另一个称之为“未决信号集” 。这两个信号集都是内核使用位图机制来实现的。但操作系统不允许我们直接对这两个信号集进行位操作,而需自定义另外一个集合,借助信号集操作函数来对 PCB 中的这两个信号集进行修改。
信号的 “未决” 是一种状态,指的是从信号的产生到信号被处理前的这一段时间。
信号的 “阻塞” 是一个开关动作,指的是阻止信号被处理,但不是阻止信号产生。
信号的阻塞就是让系统暂时保留信号留待以后发送。由于另外有办法让系统忽略信号,所以一般情况下信号的阻塞只是暂时的,只是为了防止信号打断敏感的操作。
阻塞信号集和未决信号集:
1.信号产生但是没有被处理 (未决)
- 在内核中将所有的没有被处理的信号存储在一个集合中 (未决信号集)
- SIGINT信号状态被存储在第二个标志位上
- 这个标志位的值为0, 说明信号不是未决状态
- 这个标志位的值为1, 说明信号处于未决状态
2.这个未决状态的信号,需要被处理,处理之前需要和另一个信号集(阻塞信号集),进行比较
- 阻塞信号集默认不阻塞任何的信号
- 如果想要阻塞某些信号需要用户调用系统的API
3.在处理的时候和阻塞信号集中的标志位进行查询,看是不是对该信号设置阻塞了
- 如果没有阻塞,这个信号就被处理
- 如果阻塞了,这个信号就继续处于未决状态,直到阻塞解除,这个信号就被处理
未决信号集只能被读取,不能被设置,由内核自动设置
五、信号集函数:
int sigemptyset(sigset_t *set);
- 功能:清空信号集中的数据,将信号集中的所有的标志位置为0
- 参数:set,传出参数,需要操作的信号集
- 返回值:成功返回0, 失败返回-1
int sigfillset(sigset_t *set);
- 功能:将信号集中的所有的标志位置为1
- 参数:set,传出参数,需要操作的信号集
- 返回值:成功返回0, 失败返回-1
int sigaddset(sigset_t *set, int signum);
- 功能:设置信号集中的某一个信号对应的标志位为1,表示阻塞这个信号
- 参数:
- set:传出参数,需要操作的信号集
- signum:需要设置阻塞的那个信号
- 返回值:成功返回0, 失败返回-1
int sigdelset(sigset_t *set, int signum);
- 功能:设置信号集中的某一个信号对应的标志位为0,表示不阻塞这个信号
- 参数:
- set:传出参数,需要操作的信号集
- signum:需要设置不阻塞的那个信号
- 返回值:成功返回0, 失败返回-1
int sigismember(const sigset_t *set, int signum);
- 功能:判断某个信号是否阻塞
- 参数:
- set:需要操作的信号集
- signum:需要判断的那个信号
- 返回值:
1 : signum被阻塞
0 : signum不阻塞
-1 : 失败
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
- 功能:将自定义信号集中的数据设置到内核中(设置阻塞,解除阻塞,替换)
- 参数:
- how : 如何对内核阻塞信号集进行处理
SIG_BLOCK: 将用户设置的阻塞信号集添加到内核中,内核中原来的数据不变
假设内核中默认的阻塞信号集是mask, mask | set
SIG_UNBLOCK: 根据用户设置的数据,对内核中的数据进行解除阻塞
mask &= ~set
SIG_SETMASK:覆盖内核中原来的值
- set :已经初始化好的用户自定义的信号集
- oldset : 保存设置之前的内核中的阻塞信号集的状态,可以是 NULL
- 返回值:
成功:0
失败:-1
设置错误号:EFAULT、EINVAL
int sigpending(sigset_t *set);
- 功能:获取内核中的未决信号集
- 参数:set,传出参数,保存的是内核中的未决信号集中的信息。
假设内核中默认的阻塞信号集是mask, mask | set
SIG_UNBLOCK: 根据用户设置的数据,对内核中的数据进行解除阻塞
mask &= ~set
SIG_SETMASK:覆盖内核中原来的值
- set :已经初始化好的用户自定义的信号集
- oldset : 保存设置之前的内核中的阻塞信号集的状态,可以是 NULL
- 返回值:
成功:0
失败:-1
设置错误号:EFAULT、EINVAL
int sigpending(sigset_t *set);
- 功能:获取内核中的未决信号集
- 参数:set,传出参数,保存的是内核中的未决信号集中的信息。