关于Redis分布式锁

                                            关于Redis分布式锁

参考:https://redis.io/topics/distlock

关于分布式锁的一些设计要点:

  1. 安全性保证:互斥,在任何一个时刻,只有一个客户端能获取锁。
  2. 可靠性A:不会发生死锁,最终会获取到锁,即使持有锁的客户端宕机。
  3. 可靠性B:容错,只要集群中的大多数redis节点正常,客户端应该都可以获取和释放锁。

基于master-slave架构实现的分布式锁与存在的问题

使用如下命令获取锁,resource_name不存在的时候,设置key为resource_name, 过期时间为30s

SET resource_name value NX PX 30000

使用del resource_name释放锁

del resource_name

这种实现方式会存在一个问题,问题是由于redis复制是异步复制的

  1. Client A在master上获取到锁
  2. master在将这个key复制到slave前宕机了
  3. slave升级为master,slave这台机器上没有key为resource_name的数据
  4. Client B在新的master获取key为resource_name的锁,违反了安全性的保证

使用单节点正确获取分布式锁的实现

获取锁命令:

SET resource_name my_random_value NX PX 30000

释放锁命令:

if redis.call("get",KEYS[1]) == ARGV[1] then
        return redis.call("del",KEYS[1])
    else
        return 0
    end

这个key的值设为“my_random_value”。这个值必须在所有获取锁请求的客户端里保持唯一。 基本上这个随机值就是用来保证能安全地释放锁,我们可以用下面这个Lua脚本来告诉Redis:删除这个key当且仅当这个key存在而且值是我期望的那个值。

这个很重要,因为这可以避免误删其他客户端得到的锁,举个例子,一个客户端拿到了锁,被某个操作阻塞了很长时间,过了超时时间后自动释放了这个锁,然后这个客户端之后又尝试删除这个其实已经被其他客户端拿到的锁。所以单纯的用DEL指令有可能造成一个客户端删除了其他客户端的锁,用上面这个脚本可以保证每个客户单都用一个随机字符串’签名’了,这样每个锁就只能被获得锁的客户端删除了。

key值的超时时间,也叫做”锁有效时间”。这个是锁的自动释放时间,也是一个客户端在其他客户端能抢占锁之前可以执行任务的时间,这个时间从获取锁的时间点开始计算。 所以现在我们有很好的获取和释放锁的方式,在一个非分布式的、单点的、保证永不宕机的环境下这个方式没有任何问题。接下来我们看看无法保证这些条件的分布式环境下我们该怎么做。

redis官网提供了Redlock算法的解决方案

       在分布式版本的算法里我们假设我们有N个Redis master节点,这些节点都是完全独立的,我们不用任何复制或者其他隐含的分布式协调算法。我们已经描述了如何在单节点环境下安全地获取和释放锁。因此我们理所当然地应当用这个方法在每个单节点里来获取和释放锁。在我们的例子里面我们把N设成5,这个数字是一个相对比较合理的数值,因此我们需要在不同的计算机或者虚拟机上运行5个master节点来保证他们大多数情况下都不会同时宕机。一个客户端需要做如下操作来获取锁:

1.获取当前时间(单位是毫秒)。

2.轮流用相同的key和随机值在N个节点上请求锁,在这一步里,客户端在每个master上请求锁时,会有一个和总的锁释放时间相比小的多的超时时间。比如如果锁自动释放时间是10秒钟,那每个节点锁请求的超时时间可能是5-50毫秒的范围,这个可以防止一个客户端在某个宕掉的master节点上阻塞过长时间,如果一个master节点不可用了,我们应该尽快尝试下一个master节点。

3.客户端计算第二步中获取锁所花的时间,只有当客户端在大多数master节点上成功获取了锁(在这里是3个),而且总共消耗的时间不超过锁释放时间,这个锁就认为是获取成功了。

4.如果锁获取成功了,那现在锁自动释放时间就是最初的锁释放时间减去之前获取锁所消耗的时间。

5.如果锁获取失败了,不管是因为获取成功的锁不超过一半(N/2+1)还是因为总消耗时间超过了锁释放时间,客户端都会到每个master节点上释放锁,即便是那些他认为没有获取成功的锁。

该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值