什么是堆
面试题:
-
最大K元素
题目:
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:输入: [3,2,1,5,6,4] 和 k = 2
输出: 5示例 2:
输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4说明
你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。
图示:
代码:
基本写法:
class Solution {
public int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(k, new Comparator<Integer>() {
public int compare(Integer num1, Integer num2) {
return num2 - num1;
}
});
for (int i : nums) {
maxHeap.add(i);
}
for (int i = 0; i < k - 1; i++) {
maxHeap.poll();
}
return maxHeap.poll();
}
}
快速排序写法
class Solution {
public int findKthLargest(int[] nums, int k) {
if (nums == null || nums.length == 0 || k < 1 || k > nums.length) {
return -1;
}
return partition(nums, 0, nums.length - 1, nums.length - k);
}
public int partition(int[] nums, int start, int end, int k) {
if (start >= end) {
return nums[k];
}
int left = start;
int right = end;
int pivot = nums[(start + end) / 2];
while (left <= right) {
while(left <= right && nums[left] < pivot) {
left++;
}
while (left <= right && nums[right] > pivot) {
right--;
}
if (left <= right) {
int temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;
left++;
right--;
}
}
if (k <= right) {
return partition(nums, start, right, k);
}
if (k >= left) {
return partition(nums, left, end, k);
}
return nums[k];
}
}
-
从数据流里面找中位数
中位数:
题目:示例1:
input:[1,2,3,4,5]
output:[1,1,2,2,3]
解释:
[1] and [1,2] 的中位数: 1
[1,2,3] and [1,2,3,4] 的中位数:2
[1,2,3,4,5] 的中位数: 3示例2:
input:[4,5,1,3,2,6,0]
output:[4,4,4,3,3,3,3]
解释:
[4],[4,5],[4,5,1] 的中位数:4
[4,5,1,3,],[4,5,1,3,2],[4,5,1,3,2,6] and [4,5,1,3,2,6,0] 的中位数:3
图示:
代码:
public class Solution {
/**
* @param nums: A list of integers.
* @return: the median of numbers
*/
public int[] medianII(int[] nums) {
int count = nums.length;
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(count, new Comparator<Integer>(){
public int compare(Integer num1, Integer num2) {
return num2 - num1;
}
});
PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(count);
int[] answer = new int[count];
int number = nums[0];
answer[0] = number;
for (int i = 1; i < count; i++) {
if (nums[i] > number) {
minHeap.add(nums[i]);
} else {
maxHeap.add(nums[i]);
}
if (Math.abs(maxHeap.size() - minHeap.size()) > 1) {
if (minHeap.size() > maxHeap.size()) {
maxHeap.add(number);
number = minHeap.poll();
} else {
minHeap.add(number);
number = maxHeap.poll();
}
} else {
if (maxHeap.size() - minHeap.size() == 1 && maxHeap.peek() < number) {
minHeap.add(number);
number = maxHeap.poll();
}
}
answer[i] = number;
}
return answer;
}
}
1222

被折叠的 条评论
为什么被折叠?



