找出环的初始节点

本文通过分析双指针技巧,详细解释了如何在循环链表中找到起始节点,利用快慢指针原理,揭示了节点相遇点与起始节点之间的距离关系,并通过实例演示了求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a circular linked list, implement an algorithm which returns node at the beginning of the loop.

refer to careerup


分析的很形象,

If we move two pointers, one with speed 1 and another with speed 2, they will end up meeting if the linked list has a loop. Why? Think about two cars driving on a track—the faster car will always pass the slower one!
The tricky part here is finding the start of the loop. Imagine, as an analogy, two people racing around a track, one running twice as fast as the other. If they start off at the same place, when will they next meet? They will next meet at the start of the next lap.
Now, let’s suppose Fast Runner had a head start of k meters on an n step lap. When will they next meet? They will meet k meters before the start of the next lap. (Why? Fast Runner would have made k + 2(n - k) steps, including its head start, and Slow Runner would have made n - k steps. Both will be k steps before the start of the loop.)
Now, going back to the problem, when Fast Runner (n2) and Slow Runner (n1) are moving around our circular linked list, n2 will have a head start on the loop when n1 enters. Specifically, it will have a head start of k, where k is the number of nodes before the loop. Since n2 has a head start of k nodes, n1 and n2 will meet k nodes before the start of the loop.
So, we now know the following:
1. Head is k nodes from LoopStart (by definition).
2. MeetingPoint for n1 and n2 is k nodes from LoopStart (as shown above).
Thus, if we move n1 back to Head and keep n2 at MeetingPoint, and move them both at the same pace, they will meet at LoopStart.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值