codeforces 1005D Polycarp and Div 3

Polycarp likes numbers that are divisible by 3.

He has a huge number ss. Polycarp wants to cut from it the maximum number of numbers that are divisible by 33. To do this, he makes an arbitrary number of vertical cuts between pairs of adjacent digits. As a result, after mm such cuts, there will be m+1m+1 parts in total. Polycarp analyzes each of the obtained numbers and finds the number of those that are divisible by 33.

For example, if the original number is s=3121s=3121, then Polycarp can cut it into three parts with two cuts: 3|1|213|1|21. As a result, he will get two numbers that are divisible by 33.

Polycarp can make an arbitrary number of vertical cuts, where each cut is made between a pair of adjacent digits. The resulting numbers cannot contain extra leading zeroes (that is, the number can begin with 0 if and only if this number is exactly one character '0'). For example, 007, 01 and 00099 are not valid numbers, but 90, 0 and 10001are valid.

What is the maximum number of numbers divisible by 33 that Polycarp can obtain?

Input

The first line of the input contains a positive integer ss. The number of digits of the number ss is between 11 and 2⋅1052⋅105, inclusive. The first (leftmost) digit is not equal to 0.

Output

Print the maximum number of numbers divisible by 33 that Polycarp can get by making vertical cuts in the given number ss.

Examples

Input

3121

Output

2

Input

6

Output

1

Input

1000000000000000000000000000000000

Output

33

Input

201920181

Output

4

Note

In the first example, an example set of optimal cuts on the number is 3|1|21.

In the second example, you do not need to make any cuts. The specified number 6 forms one number that is divisible by 33.

In the third example, cuts must be made between each pair of digits. As a result, Polycarp gets one digit 1 and 3333 digits 0. Each of the 3333digits 0 forms a number that is divisible by 33.

In the fourth example, an example set of optimal cuts is 2|0|1|9|201|81. The numbers 00, 99, 201201 and 8181 are divisible by 33.

 

题意:给你一个全数字的字符串,要你切割任意多的位置,要求使最后能够被3整除的数最多,问最多有多少个;

思路:仔细想一想,你会发现,当位数到达3的时候,就有一定的感觉这个数里面总会能够再切割一下,然后会出现能够被3整除的数。然后我就打表确定的一下,你会发现,当数达到三位的时候,这个数中一定会有切割后能够被3整除的数。 于是有了最佳的贪心策略,如果当前s[i] 能够直接整除3,直接 ++ ans, 否则放入tmp,代表的当前数,但是还要同时记录 0,3,6,9 这四个数的count, 如果count > 0, 直接 ans += count, 否则,++ ans.

AC代码:

#include<bits/stdc++.h>
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair<int,int>
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define INT(t) int t; scanf("%d",&t)
#define LLI(t) LL t; scanf("%I64d",&t)

using namespace std;

const int maxn = 2e5 + 10;
char s[maxn];

int main()
{
    while(~scanf("%s",s + 1)){
        int lens = strlen(s + 1);
        int ans = 0;
        int tmp = 0, coun = 0;
        rep(i,1,lens + 1){
            tmp = tmp * 10 + s[i] - '0';
            if(tmp % 3 == 0){
                ++ ans;
                coun = tmp = 0;
                continue;
            }
            if(s[i] == '0' || s[i] == '3' || s[i] == '6' || s[i] == '9')
                ++ coun;
            if(coun > 0){
                ans += coun;
                coun = tmp = 0;
            }
            else {
                if(tmp >= 100){
                    ++ ans;
                    coun = tmp = 0;
                }
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

### Codeforces Round 933 Div. 3 题目概述 Codeforces Round 933 (Div. 3) 是一场面向较低评级选手的比赛,通常包含多个不同难度级别的编程挑战。这类比赛旨在帮助新手提升算法技能并熟悉竞赛环境。 #### A. 奇偶数分组 在这个问题中,给出一系列整数,目标是将这些数字分成两部分——一部分只含奇数,另一部分仅存偶数。如果可以实现这样的划分,则输出 "YES"; 否则返回 "NO"[^1]。 ```cpp #include <bits/stdc++..h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); bool has_odd = false, has_even = false; for(int i=0; i<n; ++i){ cin>>a[i]; if(a[i]%2==0)has_even=true; else has_odd=true; } cout<<(has_odd && has_even ? "YES\n":"NO\n"); } ``` 此代码片段展示了如何读取输入数据,并通过遍历数组中的每一个元素来检查是否存在至少一个奇数和一个偶数。 #### B. 数字游戏 参与者被给予了一个正整数 \(n\) 和另一个非负整数 \(k\) 。玩家的任务是从 \(n\) 开始连续减去 \(k\) ,直到结果变为零或更小为止。该过程记录下所有的中间值形成序列。询问最终得到的序列长度是多少?[未提供具体引用] ```cpp #include<bits/stdc++.++.h> using namespace std; int main(){ long long n,k; cin>>n>>k; int cnt=0; while(n>=0){ cnt++; n-=k; } cout<<cnt<<"\n"; } ``` 这段程序实现了上述逻辑,即不断减少 `n` 的值直至其变得不再大于等于零,并统计循环次数作为答案的一部分。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值