Redis动态热点数据缓存策略设计
1. 热点数据识别机制
1.1 计数器方式
@Service
public class HotDataCounter {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
public void incrementCounter(String key) {
String countKey = "counter:" + key;
redisTemplate.opsForValue().increment(countKey, 1);
redisTemplate.expire(countKey, 1, TimeUnit.HOURS);
}
public Long getCounter(String key) {
String countKey = "counter:" + key;
return (Long) redisTemplate.opsForValue().get(countKey);
}
}
1.2 LRU算法实现
public class LRUCache<K, V> extends LinkedHashMap<K, V> {
private final int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75f, true);
this.capacity = capacity;
}
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > capacity;
}
}
2. 动态缓存策略实现
2.1 基础缓存服务
@Service
public class DynamicCacheService {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private HotDataCounter hotDataCounter;