
机器学习算法
文章平均质量分 95
机器学习算法推导,较简单算法的不调包执行
专注算法的马里奥学长
智慧环境方向 985毕业小硕 我是看南门的
主攻机器学习算法在环境领域的应用&环境领域的软件模拟
学业繁忙,答疑400/h起,敬请谅解
展开
-
Stacking:解决机器学习进行多模型组合的实用工具
在机器学习领域,算法的选择和参数的调整一直是让人头痛的难题。虽然有很多算法可以使用,但没有一种算法是万能的。随着技术的不断发展,出现了一些新的技术可以在算法选择和调整参数方面提供一些帮助。其中最流行的技术之一是Stacking。Stacking是一种用于增强机器学习模型性能的技术。该技术通过结合不同算法的预测结果来生成最终的预测结果。这种方法能够帮助解决许多机器学习问题,特别是当单一算法不足以解决问题时。原创 2023-04-09 13:57:23 · 2262 阅读 · 0 评论 -
掌握机器学习中的“瑞士军刀”XGBoost,从入门到实战
XGBoost(eXtreme Gradient Boosting)是一种集成学习算法,它可以在分类和回归问题上实现高准确度的预测。XGBoost在各大数据科学竞赛中屡获佳绩,如Kaggle等。XGBoost是一种基于决策树的算法,它使用梯度提升(Gradient Boosting)方法来训练模型。XGBoost的主要优势在于它的速度和准确度,尤其是在大规模数据集上的处理能力。XGBoost的核心思想是将多个弱分类器组合成一个强分类器。在每次迭代中,XGBoost通过加权最小化损失函数的方法来拟合模型。原创 2023-04-09 10:07:24 · 1821 阅读 · 0 评论 -
Scikit-learn中的Pipeline:让机器学习流程更加简单、高效、可靠
Pipeline是Scikit-learn中的一个类,它允许用户将多个数据预处理步骤和机器学习模型组合成一个整体。具体而言,Pipeline将多个估算器对象串联在一起,其中估算器可以是数据预处理步骤(如缺失值填充、特征缩放、特征选择等)或机器学习模型(如线性回归、决策树、支持向量机等)。Pipeline对象可以像普通的估算器一样进行训练、预测和评估,并且可以与GridSearchCV等工具一起使用,对估算器参数进行调优。使用Pipeline的好处是显而易见的:它使机器学习流程更加简单、高效和可靠。原创 2023-04-05 16:51:37 · 2345 阅读 · 0 评论 -
逻辑回归 算法推导与基于Python的实现详解
逻辑回归(Logistic Regression)是一种用于分类问题的统计学习方法。它基于线性回归的原理,通过将线性函数的输出值映射到[0,1]区间上的概率值,从而进行分类。逻辑回归的输入是一组特征变量,它通过计算每个特征与对应系数的乘积,加上截距项得到线性函数,然后将该函数的输出值经过sigmoid函数的映射,得到概率值。逻辑回归常用于二分类问题,即将样本分为两类,如判断一封邮件是否为垃圾邮件。逻辑回归还可以扩展到多分类问题,如将样本分为三类或更多类别。原创 2023-03-25 00:01:09 · 1155 阅读 · 0 评论 -
线性回归 梯度下降算法大全与基于Python的底层代码实现
梯度下降是一种常用的优化算法,它通过不断迭代来最小化一个损失函数。根据不同的损失函数和迭代方式,梯度下降可以被分为批量梯度下降(Batch Gradient Descent,BGD)、随机梯度下降(Stochastic Gradient Descent,SGD)、小批量梯度下降(Mini-batch Gradient Descent)、共轭梯度法(Conjugate Gradient,CG)等。原创 2023-03-23 13:16:48 · 1130 阅读 · 0 评论 -
线性回归 梯度下降原理与基于Python的底层代码实现
梯度下降是一种常用的优化算法,可以用来求解许包括线性回归在内的许多机器学习中的问题。原创 2023-03-21 13:05:06 · 827 阅读 · 0 评论 -
线性回归 正则项(惩罚项)原理、正则项的分类与Python代码的实现
除了前面提到的L1与L2在算法上的区别之外,还有一个重要的区别在于L1正则项的解不是唯一的,而L2正则项的解是唯一的。这是由于L1正则项的正则化图形是一个菱形,其边界在坐标轴上,而L2正则项的正则化图形是一个圆形,其边界是一个平滑的曲线。在线性回归中,正则项是一种用于控制模型复杂度的技术,它通过将系数的大小加入到损失函数中,以限制模型的复杂度。这意味着,L1正则项可以在模型中选择最重要的特征,从而提高模型的泛化能力。L2正则项将系数的平方和作为正则化项,可以防止模型中的系数过大,从而减少模型的过拟合。原创 2023-03-19 11:11:07 · 5002 阅读 · 0 评论 -
线性回归 特征扩展的原理与python代码的实现
举个例子,多项式扩展可以将一个包含 n 个特征的样本向量 x 扩展为一个包含 k 个特征的样本向量,其中 k 可以是 n 的任意多项式。例如,如果我们使用二次多项式扩展,可以将样本向量[x1, x2]扩展为一个包含原始特征和交叉项的新特征向量,例如 [x1, x2, x1^2, x2^2, x1*x2]。在多项式扩展后,我们可以使用线性回归模型来拟合扩展后的数据,并计算模型的拟合误差来评估模型的性能。在线性回归中,多项式扩展是种比较常见的技术,可以通过增加特征的数量和多项式项的次数来提高模型的拟合能力。原创 2023-03-18 16:35:51 · 1441 阅读 · 0 评论 -
线性回归 最小二乘法的求解推导与基于Python的底层代码实现
作为最常见的方法之一,线性回归仍可视为有监督机器学习的方法之一,同时也是一种广泛应用统计学和数据分析的基本技术。它是一种用于估计两个或多个变量之间线性关系的方法,其中一个变量是自变量,另一个变量是因变量。线性回归假设这两个变量之间存在线性关系,并试图找到一条最佳拟合直线,使预测值与实际值之间的误差最小化。原创 2023-03-17 09:24:38 · 1706 阅读 · 0 评论