Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1 / \ 2 3 / 4 \ 5The above binary tree is serialized as
"{1,2,3,#,#,4,#,#,5}"
.
public boolean isSymmetric(TreeNode root) {
if (root == null) return true;
return mirror(root.left, root.right);
}
public boolean mirror(TreeNode p, TreeNode q) {
if (p == null && q == null) return true;
if (p == null || q == null) return false;
return p.val == q.val && mirror(p.left, q.right) && mirror(p.right, q.left);
}
2.使用stack,stack好一点是,如果元素为null,也照样可以push、pop。
代码如下:
public boolean isSymmetric2(TreeNode root) {
Stack<TreeNode> nodeStack = new Stack<TreeNode>();
if (root == null) return true;
nodeStack.push(root.left);
nodeStack.push(root.right);
while (!nodeStack.isEmpty()) {
TreeNode q = nodeStack.pop();
TreeNode p = nodeStack.pop();
if (p == null && q == null) continue;
if (p == null || q == null) return false;
if (p.val != q.val) return false;
nodeStack.push(p.left);
nodeStack.push(q.right);
nodeStack.push(p.right);
nodeStack.push(q.left);
}
return true;
}