CC NUMFACT(Number of Factors-枚举因子)

Number of Factors

All submissions for this problem are available.

Alice has learnt factorization recently. Bob doesn't think she has learnt it properly and hence he has decided to quiz her. Bob gives Alice a very large number and asks her to find out the number of factors of that number. To make it a little easier for her, he represents the number as a product of N numbers. Alice is frightened of big numbers and hence is asking you for help. Your task is simple. Given Nnumbers, you need to tell the number of distinct factors of the product of these N numbers.

Input:

First line of input contains a single integer T, the number of test cases.

Each test starts with a line containing a single integer N.
The next line consists of N space separated integers (Ai).



Output:

For each test case, output on a separate line the total number of factors of the product of given numbers.

Constraints:

1 ≤ T ≤ 100
1 ≤ N ≤ 10
2 ≤ Ai ≤ 1000000

Example:

Input:

3
3
3 5 7
3
2 4 6
2
5 5

Output:

8
10
3

Scoring:

You will be awarded 40 points for correctly solving for Ai ≤ 100.

You will be awarded another 30 points for correctly solving for Ai ≤ 10000.

The remaining 30 points will be awarded for correctly solving for Ai ≤ 1000000.


暴力求出所有因子,枚举取的个数+1相乘
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define MP make_pair
#define MAXN (1000000+1)
#define MAXAi (1000000)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,a[MAXN]={0};
int main()
{
	freopen("NUMFACT.in","r",stdin);
//	freopen(".out","w",stdout);
    int T;
    scanf("%d",&T);
    while (T--)
    {
        memset(a,0,sizeof(a));
        scanf("%d",&n);
        For(i,n)
        {
            int p;
            scanf("%d",&p);
            Fork(i,2,sqrt(p)) while (p%i==0) a[i]++,p/=i;
            if (p>1) a[p]++;
        }
        ll ans=1;
        For(i,MAXAi)
        {
            if (a[i]) ans*=a[i]+1;
        }
        cout<<ans<<endl;


    }
	return 0;
}



A-1 Intersection Set of Prime Factors(c++题目,代码不要有注释) 分数 20 作者 陈越 单位 浙江大学 Given a positive integer n. Select two distinct digits from the decimal repersentation(十进制表示)of n, we obtain another integer m. What is the size of the intersection set(交集)of the prime factors of n and m? For example, given n=623457198, its prime factor set is A = {2, 3, 7, 13, 380621}. Swapping 2 and 9 gives us m=693457128, of which the prime factor set is B = {2, 3, 7, 13, 109, 971}. Then the intersection set of A and B is {2, 3, 7, 13}, with 4 factors. Input Specification: Each input file contains one test case, which gives a positive integer n (10<n≤10 9 ). It is guaranteed that there are at least 2 distinct digits in n. Output Specification: Swap any pair of digits in n to obtain m, you are supposed to find the m with the largest intersection set of the prime factors of n and m. Output in a line the number of the prime factors in the intersection set, together with m. The numbers must be separated by 1 space, and there must be no extra space at the beginning or the end of the line. In case such an m is not unique, output the one with the smallest value. Sample Input: 623457198 Sample Output: 4 123457698 Hint: There are two m's with 4 common factors. Besides the one given in the problem description, we can also swap 6 and 1 to obtain 123457698. This number has a prime factor set {2, 3, 7, 13, 23, 29, 113}, and so the intersection set is also {2, 3, 7, 13}. This number is in the ouput because it is smaller than 693457128. 代码长度限制 16 KB 时间限制 400 ms 内存限制 64 MB 栈限制 8192 KB
08-11
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值