POJ 2185(最大平铺矩阵)

本文介绍了一种解决最大平铺矩阵问题的算法,该问题旨在寻找一个给定矩阵的最大平铺区域,允许部分平铺但不能重叠。通过分析每列的最大平铺线段和每行的重复模式来实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Language:
Milking Grid
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 4346 Accepted: 1780

Description

给定R (1 <= R <= 10,000) *C  (1 <= C <= 75) 的矩阵,求它的最大平铺矩阵,不够的地方可部分平铺,但不可重叠。

Input

第一行:R和C.
第2-R+1行每行C个大写字母,表示矩阵.

Output

最大的平铺矩阵面积

Sample Input

2 5
ABABA
ABABA

Sample Output

2

Hint

The entire milking grid can be constructed from repetitions of the pattern 'AB'.

Source

显然这个矩阵必然从左上角开始

由于C比较少,先找出每列最大的平铺线段(行行不影响)

再考虑每行共有且最小的重复部分(可以证明增加重复部分对行的大小无影响)

在考虑行R≤10000,必须用Kmp,不凡假设句末有若干'????'

则对于字符串的P

AEICCCAEICCCAEI C  C  ?   ?   ?  ...

000000123456789 10 11 12  13  14 ...

显然?后的P递增+1,又因答案为Max(i-p[i])(i≥n)

所以(n-p[n])=Max(i-p[i])


Program grid;
const
   maxn=10000;
   maxm=75;
var
   n,m,i,j,k:longint;
   a:array[1..maxn] of string;
   f:array[1..maxm] of longint;
   flag:boolean;
   p:array[1..maxn] of longint;
begin
   fillchar(f,sizeof(f),0);
   readln(n,m);
   for i:=1 to n do
   begin
      readln(a[i]);
      for j:=1 to m do
      begin
         flag:=true;
         for k:=j+1 to m do
            if a[i][k]<>a[i][k-j] then begin flag:=false; break; end;
            if flag then inc(f[j]);
      end;
   end;
   for i:=1 to m do if f[i]=n then break;
   m:=i;

   for i:=1 to n do delete(a[i],m+1,maxlongint);

   j:=0;p[1]:=0;
   for i:=2 to n do
   begin
      while (j>0) and (a[i]<>a[j+1]) do j:=p[j];
      if (a[i]=a[j+1]) then inc(j);
      p[i]:=j;
   end;

   n:=n-p[n];
   writeln(m*n);





end.









POJ 3213 题目是一个关于矩阵乘法的经典计算机科学问题。矩阵乘法通常是线性代数的基础操作,给定两个矩阵 A 和 B,你需要计算它们的乘积 C = A * B,其中每个元素 C[i][j] 是对应位置上 A 的行向量与 B 的列向量的点积。 以下是一个简单的 Java 代码示例,使用嵌套循环来实现矩阵乘法: ```java import java.util.Scanner; public class MatrixMultiplication { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); // 输入矩阵的维度 System.out.println("Enter the dimensions of matrix A (m x n):"); int m = scanner.nextInt(); int n = scanner.nextInt(); // 创建矩阵 A 和 B int[][] matrixA = new int[m][n]; int[][] matrixB = new int[n][n]; // 读取矩阵 A 的元素 System.out.println("Enter elements of matrix A:"); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { matrixA[i][j] = scanner.nextInt(); } } // 读取矩阵 B 的元素(假设输入的矩阵都是方阵,大小为 n x n) System.out.println("Enter elements of matrix B:"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { matrixB[i][j] = scanner.nextInt(); } } // 矩阵乘法 int[][] result = new int[m][n]; // 结果矩阵 for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { // 每次循环k用于遍历B的列 result[i][j] += matrixA[i][k] * matrixB[k][j]; } } } // 输出结果矩阵 System.out.println("Matrix multiplication result:"); for (int[] row : result) { for (int element : row) { System.out.print(element + " "); } System.out.println(); } scanner.close(); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值