Codeforces Round #405 (rated, Div. 1, based on VK Cup 2017 Round 1) 题解(待续)

Bear and Different Names

手速题

#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define pb push_back
#define mp make_pair 
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %I64d\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
int a[10000],b[10000];
void pri(int p) {
    printf("%c%c",p/26+'A',p%26+'a');
}
int main()
{
//  freopen("A.in","r",stdin);
//  freopen(".out","w",stdout);

    int n=read(),k=read();
    For(i,n-k+1) {
        string s;
        cin>>s;
        b[i]=s[0]=='Y';
    } 

    int cnt=k-1;
    For(i,k-1) a[i]=i,pri(i),putchar(' ');
    For(i,n-k+1)
    {
        if (b[i]) {
            a[i+k-1]=++cnt;pri(cnt);
        } else {
            a[i+k-1]=a[i]; pri(a[i]);
        }
        if (i<n-k+1) putchar(' ');
    }cout<<endl;
    return 0;
}

Bear and Tree Jumps

求树中每条路径长度div k 后的和

s,tf(s,t)/k=s,t(f(s,t)+[(kf(s,t)modk)modk])/k
我们统计f(s,t)modk=c 的路径的数量即可

#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define pb push_back
#define mp make_pair 
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %I64d\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define MAXN (212345)
int sz[MAXN]={},n,k;
vi edges[MAXN];
ll f[MAXN][5][5]={};
ll ans=0,cnt=0;
void dfs(int x,int fa) {
    int s=SI(edges[x]);
    sz[x]++;f[x][0]++;
    Rep(i,s) {
        int v=edges[x][i];
        if (v^fa) {
            dfs(v,x);

            ans+=(ll)sz[x]*(n-sz[x]);           
            Rep(j,k) Rep(l,k) if ((j+l)%k ) {
                ans+=f[x][j]*f[v][l]*(k-(j+l+1)%k);
            }
            Rep(j,k) {
                f[x][j]+=f[v][(j+k-1)%k];
            }
            sz[x]+=sz[v];
        }
    }
}
void dfs2(int x,int fa) {
    int s=SI(edges[x]);
    Rep(i,s) {
        int v=edges[x][i];
        if (v^fa) {
            dfs2(v,x);
            ll p=n-sz[v];
            ll q=f[v][0];
//          ans+=p*q;
        }
    }
}
int main()
{
    freopen("B.in","r",stdin);
//  freopen(".out","w",stdout);
    cin>>n>>k;
    For(i,n-1) {
        int p=read(),q=read();
        edges[p].pb(q);
        edges[q].pb(p);
    }   
    dfs(1,0);
    dfs2(1,0);
    For(i,n) cout<<f[i][0]<<' ';cout<<endl;
    cout<<ans<<endl;
    return 0;
}

Bear and Company

给一个字符串,至少交换相邻2位字符几次使字符串中没有’VK’
和BC那题很像,但是代价不是距离差/2
反例:
ABC->CBA
距离差/2=2,最小交换次数=3
所以我们可以考虑逆序对数,
每种元素之间没有差别,意味着同种元素之间没有交换
我们假设前若干个字符中V,K,X各种了i,j,k个,后面加一个K
显然你要挪的是逆序对数量,即前pre_pos[k]前有几个不在还没取过
这里写图片描述

#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define pb push_back
#define mp make_pair 
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %I64d\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define MAXN (80)
char s[MAXN];
int cnt[3],c[1000][MAXN];
int f[MAXN][MAXN][MAXN][2];
int Abs(int x) {
    return max(x,-x);
}
int gmin(int &x,int a){
    x=min(x,a);
}
int g[MAXN][4];
int main()
{
//  freopen("C.in","r",stdin);
//  freopen(".out","w",stdout);

    int n=read();
    cin>>(s+1);
    For(i,n) {
        if (s[i]=='V') c[0][++cnt[0]]=i;
        else if (s[i]=='K') c[1][++cnt[1]]=i;
        else c[2][++cnt[2]]=i;
        Rep(j,3)
            g[i][j]=cnt[j];
    }
    MEMI(f)
    f[0][0][0][1]=0;
    Rep(i,n) 
        Rep(j,1+min(cnt[0],i))
            Rep(k,1+min(cnt[1],i-j) ) 
                    Rep(l,2)
                        if (f[i][j][k][l]!=INF) {
                            if (j<cnt[0]) { //put v
                                int pos=c[0][j+1],c=pos-1;
                                c-=min(j,g[pos-1][0]);
                                c-=min(k,g[pos-1][1]);
                                c-=min(i-j-k,g[pos-1][2]);
                                gmin(f[i+1][j+1][k][0],f[i][j][k][l]+c);
                            }
                            if (k<cnt[1]&&l) { //put k
                                int pos=c[1][k+1],c=pos-1;
                                c-=min(j,g[pos-1][0]);
                                c-=min(k,g[pos-1][1]);
                                c-=min(i-j-k,g[pos-1][2]);
                                gmin(f[i+1][j][k+1][1],f[i][j][k][l]+c);
                            }
                            if (i-j-k<cnt[2]) { //put l
                                int pos=c[2][i-j-k+1],c=pos-1;
                                c-=min(j,g[pos-1][0]);
                                c-=min(k,g[pos-1][1]);
                                c-=min(i-j-k,g[pos-1][2]);
                                gmin(f[i+1][j][k][1],f[i][j][k][l]+c);
                            }
//                          cout<<i<<" "<<j<<" "<<k<<' '<<l<<' '<<f[i][j][k][l]<<endl;
                        }

    cout<<min(f[n][cnt[0]][cnt[1]][0],f[n][cnt[0]][cnt[1]][1])<<endl;                       


    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值