CF 558B(Amr and The Large Array-计数)

本博客探讨了一个算法问题:如何在给定数组中找到一个最小子段,使得其最大重复元素次数与原始数组相同。通过输入数组大小和元素,输出能够保持数组美丽性的最小子段边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Amr and The Large Array
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Amr has got a large array of size n. Amr doesn't like large arrays so he intends to make it smaller.

Amr doesn't care about anything in the array except the beauty of it. The beauty of the array is defined to be the maximum number of times that some number occurs in this array. He wants to choose the smallest subsegment of this array such that the beauty of it will be the same as the original array.

Help Amr by choosing the smallest subsegment possible.

Input

The first line contains one number n (1 ≤ n ≤ 105), the size of the array.

The second line contains n integers ai (1 ≤ ai ≤ 106), representing elements of the array.

Output

Output two integers l, r (1 ≤ l ≤ r ≤ n), the beginning and the end of the subsegment chosen respectively.

If there are several possible answers you may output any of them.

Sample test(s)
input
5
1 1 2 2 1
output
1 5
input
5
1 2 2 3 1
output
2 3
input
6
1 2 2 1 1 2
output
1 5
Note

A subsegment B of an array A from l to r is an array of size r - l + 1 where Bi = Al + i - 1 for all 1 ≤ i ≤ r - l + 1


对每个可能值计数


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (2000000+10)
#define N (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int l[MAXN],r[MAXN],t[MAXN],n;
int main()
{
//	freopen("B.in","r",stdin);
//	freopen(".out","w",stdout);
	
	For(i,N) l[i]=INF,r[i]=-INF,t[i]=0;
	
	cin>>n;
	For(i,n)
	{
		int p;scanf("%d",&p);
		l[p]=min(l[p],i);
		r[p]=max(r[p],i);
		t[p]++;
	}
	
	int ma=0,ans=INF,j=0;
	For(i,N) ma=max(ma,t[i]);
	For(i,N)
		if (ma==t[i]&&ans>r[i]-l[i]+1)
		{
			 ans=r[i]-l[i]+1;j=i;
		}
	cout<<l[j]<<' '<<r[j]<<endl;
	
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值