1 链表基本图解
单链表
双链表
循环链表
存储方式:存储空间不连续,以指针指向存储的位置
链表优点:删除或者添加节点的时候只需要将指针的指向改变就行,与数组相比复杂度降低了许多。
缺点:遍历寻址浪费时间
2. 移除链表元素
class Solution {
public ListNode removeElements(ListNode head, int val) {
//1 使用虚拟头指针
if (head == null){
return head;
}
ListNode dummy = new ListNode(-1, head); //虚拟头节点,防止头节点被删除情况下需要单独操作
ListNode pre = dummy;
ListNode cur = head;
while (cur != null){
if (cur.val == val){
pre.next = cur.next; //直接将指针指向删除元素下一个就好了
}
else{
pre = cur; //不删除的话pre指针跟着cur走就好了
}
cur = cur.next;
}
return dummy.next;
}
}
class Solution {
public ListNode removeElements(ListNode head, int val) {
//2 不添加虚拟节点,但是有pre的方式
while (head != null && head.val == val){ //注意:需要优先处理head,不然有可能空了但是却没办法判断
head = head.next; //如[7,7,7,7,7]7 先处理完成为空,直接不用执行其他的
}
if (head == null){
return head;
}
ListNode pre = head;
ListNode cur = head.next;
while (cur != null){
if (cur.val == val){
pre.next = cur.next; //直接将指针指向删除元素下一个就好了
}
else{
pre = cur; //不删除的话pre指针跟着cur走就好了
}
cur = cur.next;
}
return head;
}
}
class Solution {
public ListNode removeElements(ListNode head, int val) {
//3 不使用虚拟头指针
while(head != null && head.val == val){
head = head.next; //删除头节点的方法就是直接指向后一个就好了
}
if (head == null){
return head;
}
ListNode cur = head;
while (cur != null){
while (cur.next != null && cur.next.val == val){
cur.next = cur.next.next;
}
cur = cur.next;
}
return head;
}
}
3. 设计链表
//1 针对单链表来说
class ListNode {
int val;
ListNode next;
ListNode(){}
ListNode(int val){
this.val = val;
}
}
class MyLinkedList {
int size; //链表大小
ListNode head; //头节点
public MyLinkedList() {
size = 0;
head = new ListNode(0);
}
public int get(int index) {
if (index < 0 || index >= size) {
return -1;
}
ListNode pre = head;
for (int i = 0; i <= index; i ++) { //需要包含,因为index和i的索引都是从0开始,一一对应的
pre = pre.next;
}
return pre.val;
}
public void addAtHead(int val) {
addAtIndex(0, val);
}
public void addAtTail(int val) {
addAtIndex(size, val);
}
public void addAtIndex(int index, int val) {
if (index > size) return;
if (index < 0) index = 0;
//添加一个值后size增加一
size ++; //当找到size的时候,对应的指针指向它的前驱节点
ListNode pred = head;
for (int i = 0; i < index; i ++){
pred = pred.next; //找到前驱节点
}
ListNode newNode = new ListNode(val);
newNode.next = pred.next;
pred.next = newNode;
}
public void deleteAtIndex(int index) {
if (index < 0 || index >= size) {
return;
}
size --; //删除一个节点后尺寸size减小一
if (index == 0){
head = head.next;
return;
}
ListNode pred = head;
for (int i = 0; i < index; i ++){
pred = pred.next; //找到前驱节点
}
pred.next = pred.next.next;
}
}
//2 双链表
class ListNode {
int val;
ListNode next, prev;
ListNode() {};
ListNode(int val) {
this.val = val;
}
}
class MyLinkedList {
int size; //链表大小
ListNode head, tail; //头节点, 尾节点
public MyLinkedList() {
this.size = 0;
this.head = new ListNode(0);
this.tail = new ListNode(0);
head.next = tail;
tail.prev = head;
}
public int get(int index) {
if (index < 0 || index >= size) {
return -1;
}
ListNode cur = head;
if (index >= size / 2) { //判断从哪一边遍历时间会短一点
cur = tail;
for (int i = 0; i < size - index; i ++) {
cur = cur.prev;
}
}
else{
for (int i = 0; i <= index; i ++) {
cur = cur.next;
}
}
return cur.val;
}
public void addAtHead(int val) {
addAtIndex(0, val);
}
public void addAtTail(int val) {
addAtIndex(size, val);
}
public void addAtIndex(int index, int val) {
if (index > size) return;
if (index < 0) index = 0;
//添加一个值后size增加一
size ++; //当找到size的时候,对应的指针指向它的前驱节点
ListNode pred = head;
for (int i = 0; i < index; i ++){
pred = pred.next; //找到前驱节点
}
ListNode newNode = new ListNode(val);
newNode.next = pred.next; //需要从后面开始处理,不然会报错
pred.next.prev = newNode;
newNode.prev = pred;
pred.next = newNode;
}
public void deleteAtIndex(int index) {
if (index < 0 || index >= size) {
return;
}
size --; //删除一个节点后尺寸size减小一
if (index == 0){
head = head.next;
return;
}
ListNode pred = head;
for (int i = 0; i < index; i ++){
pred = pred.next; //找到前驱节点
}
pred.next.next.prev = pred; //需要从后面开始处理,不然会报错
pred.next = pred.next.next;
}
}
4. 翻转链表
//1 双指针法
class Solution {
public ListNode reverseList(ListNode head) {
ListNode pre = null;
ListNode cur = head;
ListNode temp = null; //缓存指针
while (cur != null) {
temp = cur.next; //将指针的指向交换
cur.next = pre;
pre = cur;
cur = temp;
}
return pre;
}
}
//2 虚拟头指针法
class Solution {
public ListNode reverseList(ListNode head) {
ListNode dummy = new ListNode(-1);
ListNode cur = head;
ListNode temp = null;
while (cur != null) {
temp = cur.next; //将指针的指向交换
cur.next = dummy.next;
dummy.next = cur;
cur = temp;
}
return dummy.next;
}
}
//3 栈方法
class Solution {
public ListNode reverseList(ListNode head) {
if (head == null) return null; //为空
if (head.next == null) return head; //只有一个元素
Stack<ListNode> stack = new Stack<>(); //创建栈
ListNode cur = head;
while (cur != null){ //元素依次入栈
stack.push(cur);
cur = cur.next;
}
//创建一个虚拟头节点
ListNode pHead = new ListNode(0);
cur = pHead;
while (!stack.isEmpty()) { //元素怒依次出栈
ListNode node = stack.pop();
cur.next = node;
cur = cur.next;
}
cur.next = null; //最后一个元素要为null
return pHead.next;
}
}
5. 两两交换链表中的节点
class Solution {
public ListNode swapPairs(ListNode head) {
ListNode dummy = new ListNode(-1); //创建虚拟头节点
dummy.next = head;
ListNode cur = dummy;
ListNode temp; //保存第三个节点
ListNode firstNode; //缓存第一个
ListNode secondNode; //缓存第二个
while (cur.next != null && cur.next.next != null) {
temp = cur.next.next.next;
firstNode = cur.next;
secondNode = cur.next.next;
cur.next = secondNode;
secondNode.next = firstNode;
firstNode.next = temp;
cur = firstNode;
}
return dummy.next;
}
}
//2 递归思想
class Solution {
public ListNode swapPairs(ListNode head) {
if (head == null || head.next == null) return head;
ListNode next = head.next;
ListNode swapNode = swapPairs(next.next); //递归
next.next = head; //交换操作
head.next = swapNode;
return next;
}
}
6. 删除链表中倒数第N个节点
//1 先统计个数,再删除
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode dummy = new ListNode(-1); //创建虚拟头节点
dummy.next = head;
ListNode cur = head;
int size = 0; //统计链表节点个数
while (cur != null) {
size ++;
cur = cur.next;
}
ListNode pred = dummy;
for (int i = 0; i < size - n; i ++) { //寻找前驱节点
pred = pred.next;
}
pred.next = pred.next.next;
return dummy.next;
}
}
// 2 快慢指针
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode dummy = new ListNode(-1);
dummy.next = head;
ListNode slowPoint = dummy;
ListNode fastPoint = dummy;
for (int i = 0; i < n; i ++){
fastPoint = fastPoint.next; //使得快慢指针相差n个
}
while (fastPoint.next != null) { //快慢指针同时向后直到最后
fastPoint = fastPoint.next;
slowPoint = slowPoint.next;
}
slowPoint.next = slowPoint.next.next; //此时的slowPoint是前驱节点,执行删除
return dummy.next;
}
}
7. 链表相交
public class Solution {
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
int lenA = 0; //记录两个链表的长度
int lenB = 0;
ListNode preA = headA;
ListNode preB = headB;
while (preA != null) { //获取A的长度
lenA ++;
preA = preA.next;
}
while (preB != null) { //获取B的长度
lenB ++;
preB = preB.next;
}
ListNode curA = headA; //指针重新指向头节点
ListNode curB = headB;
if (lenA < lenB) { //让curA指向较长的链表
int tempLen = lenA;
lenA = lenB;
lenB = tempLen;
ListNode tempNode = curA;
curA = curB;
curB = tempNode;
}
int gap = lenA - lenB;
while ( gap > 0) { //将curA移动到和curB的开始处对齐
curA = curA.next;
gap --;
}
while (curA != null) {
if (curA == curB) { //找到值相同的点
return curA;
}
curA = curA.next;
curB = curB.next;
}
return null;
}
8.环形链表
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (fast == slow) { //如果有环,快慢指针一定相遇。类似于操场跑步。跑的快的一定会追上慢的
ListNode node1 = head;
ListNode node2 = fast;
while (node1 != node2) { //都按照一步走就能找到入环处
node1 = node1.next;
node2 = node2.next;
}
return node1;
}
}
return null;
}
}