归一化

概念

归一化就是把所有数据都转化成[0,1]或者[-1,1]之间的数,其目的是为了取消各维数据之间的数量级差别,避免因为输入输出数据数量级差别大而造成网络预测误差过大。

好处

归一化有如下好处,即
1)归一化后加快了梯度下降求最优解的速度,也即加快训练网络的收敛性;
2)归一化有可能提高精度

归一化的对比

imageimage

归一化的目的就是使得预处理的数据被限定在一定的范围内(比如[0,1]或者[-1,1]),从而消除奇异样本数据导致的不良影响。如图里的数据X6image

奇异样本数据

奇异样本数据的存在会引起训练时间增大,同时也可能导致无法收敛,因此,当存在奇异样本数据时,在进行训练之前需要对预处理数据进行归一化;反之,不存在奇异样本数据时,则可以不进行归一化。

归一化的类型

1:线性归一化

线性归一化也被称为最小-最大规范化;离散标准化,是对原始数据的线性变换,将数据值映射到[0,1]之间。image

def MaxMinNormalization(x,Max,Min):
    x = (x - Min) / (Max - Min);
    return x

2:零-均值归一化(Z-score标准化)

Z-score标准化也被称为标准差标准化,经过处理的数据的均值为0,标准差为1。其转化公式为:image
其中u为原始数据的均值,delta为原始数据的标准差,是当前用的最多的标准化公式

def Z_ScoreNormalization(x,mu,sigma):
    x = (x - mu) / sigma;
    return x

3:非线性归一化

这个方法包括log,指数,正切
适用范围:经常用在数据分析比较大的场景,有些数值很大,有些很小,将原始值进行映射。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值