import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#number 1-10 data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
def add_layer(inputs,in_size,out_size,activation_function=None):
#add one more layer and return the out of this layer
with tf.name_scope('layer'):
with tf.name_scope('Wieght'):
Weight = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name='biases')
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs,Weight),biases,name='Wx_plus_b')
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
return result
#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28*28
ys = tf.placeholder(tf.float32,[None,10])
#add output layer
prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
reduction_indices=[1]))#loss
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
#import step
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))
采用mnist数据,add_layer为tensorflow–代码学习2中添加层def,网络结构可在tensorboard中查看
结果:
0.0927
0.6563
0.7453
0.7842
0.8107
0.8195
0.8329
0.8391
0.8434
0.8531
0.8585
0.8618
0.8587
0.869
0.8697
0.8687
0.8689
0.8757
0.875
0.8755
可以发现,效果其实不是特别高,后续会改进网络