poj1655 Balancing Act 求树的重心

本文介绍了一种通过深度优先搜索(DFS)算法求解树的重心的方法。树的重心定义为删除某节点后使得所有子树大小不超过整棵树一半的节点。文章详细解释了如何通过DFS实现树的重心查找,并提供了完整的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://poj.org/problem?id=1655

Balancing Act
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 9072 Accepted: 3765

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

Source


求树的重心!!

树的重心性质是以该点为根的有根树最大子树的结点数最少,也就是让这树更加"平衡",容易知道这样所有的子树的大小都不会超过整个树大小的一半,所以在树分治时防止树退化成链很有用。。

求树的重心做法是dfs简单的树dp就行。设son[i]表示以i为根的子树的结点数(包括i,叶子结点就是1),那么son[i]就+=sum(son[j])...然后求以i为根的最大结点数就是max(son[j],n-son[i]),n-son[i]是i的"上方结点"的个数。

关于树的重心一些性质:http://fanhq666.blog.163.com/blog/static/81943426201172472943638/

代码:

/**
 * @author neko01
 */
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
#define min3(a,b,c) min(a,min(b,c))
#define max3(a,b,c) max(a,max(b,c))
#define pb push_back
#define mp(a,b) make_pair(a,b)
#define clr(a) memset(a,0,sizeof a)
#define clr1(a) memset(a,-1,sizeof a)
#define dbg(a) printf("%d\n",a)
typedef pair<int,int> pp;
const double eps=1e-9;
const double pi=acos(-1.0);
const int INF=0x3f3f3f3f;
const LL inf=(((LL)1)<<61)+5;
const int N=20005;
struct node{
    int to,next;
}e[N*2];
int head[N];
int son[N];  //son[i]表示以i为根的子树节点个数包括i
int dp[N];   //dp[i]表示以i为根时的最大子树节点数
int tot;
int n;
void init()
{
    tot=0;
    clr1(head);
}
void add(int u,int v)
{
    e[tot].to=v;
    e[tot].next=head[u];
    head[u]=tot++;
}
void dfs(int u,int pre)
{
    son[u]=1;
    dp[u]=0;
    for(int i=head[u];i!=-1;i=e[i].next)
    {
        int v=e[i].to;
        if(v!=pre)
        {
            dfs(v,u);
            son[u]+=son[v];
            dp[u]=max(dp[u],son[v]);
        }
    }
    dp[u]=max(dp[u],n-son[u]);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        init();
        for(int i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
            add(v,u);
        }
        dfs(1,0);
        int ans1=0,ans2=n+1;
        for(int i=1;i<=n;i++)
            if(dp[i]<ans2)
            {
                ans2=dp[i];
                ans1=i;
            }
        printf("%d %d\n",ans1,ans2);
    }
    return 0;
}



### POJ 树的重心问题解法 树的重心问题在POJ平台上的经典题目是 **POJ1655**。该问题的核心在于通过深度优先搜索(DFS)计算每个节点的子树大小,并进一步确定删除某个节点后,剩余部分的最大子树大小。最终目标是找到一个节点,使得删除该节点后,剩余的最大子树大小最小。 以下是关于该问题的具体解法代码实现: #### 问题描述 给定一棵,要找到树的重心树的重心定义为:删除某个节点后,所有生成的连通分量中,最大连通分量的节点数尽可能小。如果存在多个满足条件的节点,则输出编号最小的节点。 #### 解法思路 1. 使用 DFS 遍历整棵,计算每个节点的子树大小 `son[u]`。 2. 在 DFS 过程中,对于每个节点 `u`,记录其所有子树的最大节点数 `Max`。 3. 计算当前节点 `u` 的父节点延伸出去的节点数目 `n - son[u]`。 4. 确定当前节点 `u` 删除后,剩余的最大子树大小 `tmp = max(Max, n - son[u])`。 5. 更新答案,选择使得 `tmp` 最小的节点作为重心。若 `tmp` 相等,则选择编号较小的节点。 #### 代码实现 以下是一个基于 C++ 的完整实现: ```cpp #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 20005; int head[N], top = 0; int n; int son[N]; int ans, point; struct Edge { int v, next; } edge[N * 2]; void init() { memset(head, -1, sizeof(head)); top = 0; memset(son, 0, sizeof(son)); ans = n + 1; // 初始化为一个较大值 } void addedge(int u, int v) { edge[top].v = v; edge[top].next = head[u]; head[u] = top++; } void dfs(int u, int fa) { son[u] = 1; int Max = 0; for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].v; if (v == fa) continue; dfs(v, u); son[u] += son[v]; Max = max(Max, son[v]); } int tmp = max(Max, n - son[u]); if (tmp < ans || (tmp == ans && u < point)) { ans = tmp; point = u; } } int main() { int T; scanf("%d", &T); while (T--) { init(); scanf("%d", &n); int u, v; for (int i = 1; i < n; i++) { scanf("%d%d", &u, &v); addedge(u, v); addedge(v, u); } dfs(1, -1); printf("%d %d\n", point, ans); } return 0; } ``` #### 关键点解释 1. **初始化**:使用 `init()` 函数清空全局变量,确保每次测试用例独立运行[^3]。 2. **边的存储**:采用邻接表存储的结构,便于快速访问每个节点的子节点。 3. **DFS 遍历**:通过递归方式计算每个节点的子树大小,并更新最大子树大小。 4. **结果更新**:在遍历过程中,实时更新最优解,确保最终答案满足题意。 #### 时间复杂度 - **DFS 遍历**:每个节点边仅被访问一次,时间复杂度为 \(O(n)\)。 - **总复杂度**:对于多组测试数据,时间复杂度为 \(O(T \cdot n)\),其中 \(T\) 是测试用例数量,\(n\) 是节点数量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值