On a history lesson the teacher asked Vasya to name the dates when n famous events took place. He doesn't remembers the exact dates but he remembers a segment of days [li, ri] (inclusive) on which the event could have taken place. However Vasya also remembers that there was at most one event in one day. Help him choose such n dates of famous events that will fulfill both conditions. It is guaranteed that it is possible.
The first line contains one integer n (1 ≤ n ≤ 100) — the number of known events. Then follow n lines containing two integers li and rieach (1 ≤ li ≤ ri ≤ 107) — the earliest acceptable date and the latest acceptable date of the i-th event.
Print n numbers — the dates on which the events took place. If there are several solutions, print any of them. It is guaranteed that a solution exists.
3 1 2 2 3 3 4
1 2 3
2 1 3 1 3
1 2
思路:每次选择左边界最小,次之右边界最小,选择此区间的左边界值l作为此区间代表,并删去本区间,然后提升剩余区间的左边界使之大于那个区间的代表l,重复此步骤即可
#include<iostream>
#include<cstring>
using namespace std;
const int mm=110;
class node
{
public:int l,r;
}f[mm];
bool vis[mm];
int ans[mm];
bool ok(int a,int b)
{
if(f[a].l<f[b].l)return 1;
else if(f[a].l==f[b].l&&f[a].r<f[b].r)return 1;
return 0;
}
int main()
{
int n;
while(cin>>n)
{
for(int i=0;i<n;i++)
{
cin>>f[i].l>>f[i].r;vis[i]=0;
}
int k;
for(int i=0;i<n;i++)
{ k=-1;
for(int j=0;j<n;j++)
if(!vis[j]&&(k==-1||ok(j,k)))///选择区间左界最小
k=j;
int w=ans[k]=f[k].l;
++w;vis[k]=1;
for(int j=0;j<n;j++)///提升剩余区间的左界
if(w>f[j].l)
f[j].l=w;
}
for(int i=0;i<n;i++)
cout<<ans[i]<<" ";cout<<"\n";
}
}
本文介绍了一种解决历史事件日期选择问题的算法。该算法帮助确定一系列著名历史事件的确切发生日期,在已知每个事件可能发生的时间段的情况下,确保任意两天内不会发生超过一个事件。通过选择每个时间段的最早日期,并调整后续时间段的开始日期来避免冲突。
388

被折叠的 条评论
为什么被折叠?



