cf-History

C. History
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarpus likes studying at school a lot and he is always diligent about his homework. Polycarpus has never had any problems with natural sciences as his great-great-grandfather was the great physicist Seinstein. On the other hand though, Polycarpus has never had an easy time with history.

Everybody knows that the World history encompasses exactly n events: the i-th event had continued from the year ai to the year bi inclusive (ai < bi). Polycarpus easily learned the dates when each of n events started and ended (Polycarpus inherited excellent memory from his great-great-granddad). But the teacher gave him a more complicated task: Polycaprus should know when all events began and ended and he should also find out for each event whether it includes another event. Polycarpus' teacher thinks that an event j includes an event i if aj < ai and bi < bj. Your task is simpler: find the number of events that are included in some other event.

Input

The first input line contains integer n (1 ≤ n ≤ 105) which represents the number of events. Next n lines contain descriptions of the historical events, one event per line. The i + 1 line contains two integers ai and bi (1 ≤ ai < bi ≤ 109) — the beginning and the end of the i-th event. No two events start or finish in the same year, that is, ai ≠ aj, ai ≠ bj, bi ≠ aj, bi ≠ bj for all i, j (where i ≠ j). Events are given in arbitrary order.

Output

Print the only integer — the answer to the problem.

Sample test(s)
Input

5
1 10
2 9
3 8
4 7

Output
4
Input
5
1 100
2 50
51 99
52 98
10 60
第一次做cf感觉题目还是比较好的,题意是给出n个历史事件的开始和结束时间,求出满足一个事件在其他任一一个事件发生之内的事件的个数(n<10^5)
View Code
 1 #include <iostream>
2 #include <cstdio>
3 #include <algorithm>
4 #include <cstring>
5 #include <cstdlib>
6
7 using namespace std;
8
9 const int N=1000010;
10 struct node
11 {
12 int s,e;
13 }f[N];
14
15 int cmp(const void *a,const void *b)
16 {
17 struct node *c=(struct node *)a;
18 struct node *d=(struct node *)b;
19 return c->s - d->s;
20 }
21 int table[N],n,used[N];
22 int find(int key)
23 {
24 int l=0,r=n-1;
25 while(l<=r)
26 {
27 int mid=(l+r)>>1;
28 if(key==table[mid]) return mid;
29 else if(key<table[mid])
30 r=mid-1;
31 else
32 l=mid+1;
33 }
34 }
35
36 int main()
37 {
38
39 while(scanf("%d",&n)!=EOF)
40 {
41 for(int i=0;i<n;i++)
42 {
43 scanf("%d%d",&f[i].s,&f[i].e);
44 table[i]=f[i].e;
45 }
46 qsort(f,n,sizeof(f[0]),cmp);
47 sort(table,table+n);
48 memset(used,0,sizeof(used));
49 int ans=0;
50 int k,pre=n-1;
51 for(int i=n-1;i>0;i--)
52 {
53 k=pre;
54 while(used[k]==1) k--;
55 if(f[i].e<table[k]) ans++;
56 int pos=find(f[i].e);
57 used[pos]=1;
58 pre=k;
59 }
60 printf("%d\n",ans);
61 }
62 return 0;
63 }

另外一个题简单题he sequence of n integers is called a permutation if it contains all integers from 1 to n exactly once.算作日常积累吧

 

转载于:https://www.cnblogs.com/one--world--one--dream/archive/2011/12/17/2291152.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值