hdu 1069 Monkey and Banana(dp)

本文概述了AI音视频处理领域的关键技术,包括视频分割、语义识别、自动驾驶、AR、SLAM、物体检测与识别、语音识别变声等,探讨了终端AI边缘计算的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4637    Accepted Submission(s): 2388


Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.


 

Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.


 

Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".


 

Sample Input
  
1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0


 

Sample Output
  
Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342


 

Source


 

Recommend
JGShining

 

思路:dp[i]=E(dp[i-1])+h[i];dp[i]以第i个物体的地面为底所能达到的最大高度.那么可以先把所有的物体的按不同地面构造,一个长方体最多3个不同的面。以这些面为底面从小到  大排序,然后依次检查i物体为底所能得到的最大高度。即可求得答案

具体看代码。

失误点:没从0开始,WA了依次,编程不认真WA一次

 

#include<iostream>
#include<algorithm>
using namespace std;
class node
{
  public:
  int area;
  int x,y,h;
}*s;
int n;
bool cmp(node a,node b)
{
  return a.area<b.area;
}
int main()
{ int a,b,c;int cas=0;
  while(cin>>n&&n)
  { s=new node[3*n+5];
    for(int i=0;i<n;i++)
    {
      cin>>a>>b>>c;
      s[3*i].x=a;
      s[3*i].y=b;
      s[3*i].h=c;
      s[3*i].area=a*b;
      s[3*i+1].x=a;
      s[3*i+1].y=c;
      s[3*i+1].h=b;
      s[3*i+1].area=a*c;
      s[3*i+2].x=c;
      s[3*i+2].y=b;
      s[3*i+2].h=a;
      s[3*i+2].area=c*b;
    }
    sort(s,s+3*n,cmp);
    int hh=0;bool find=0;int ans=0;
    for(int i=0;i<3*n;i++)
    { find=0;hh=0;
      for(int j=0;j<=i-1;j++)
      {
        if((s[i].x>s[j].x&&s[i].y>s[j].y)||(s[i].y>s[j].x&&s[i].x>s[j].y))
        {
          if(hh<s[j].h)hh=s[j].h;
          find=1;
        }
      }
      if(find)s[i].h+=hh;
      if(s[i].h>ans)ans=s[i].h;
    }
    cout<<"Case "<<++cas<<": maximum height = "<<ans<<"\n";
  }
}


 

 

 

内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备一定机器学习基础,特别是对神经网络和优化算法有一定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值