ZOJ 3777 Problem Arrangement(DP)



ZOJ Problem Set - 3777
Problem Arrangement

Time Limit: 2 Seconds      Memory Limit: 65536 KB

The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.

There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.

Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to Mpoints, the permutation is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).

The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).

Output

For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.

Sample Input
2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4
Sample Output
3/1
No solution

Author: DAI, Longao
Source: The 11th Zhejiang Provincial Collegiate Programming Contest



很明显状态压缩可心搞

dp[x][y][z]到前x行列状态为y和为z的排列数

dp[x+1][y|(1<<k)][z+f[x][j]] += dp[x][y][z]

优化,一行肯定要选定一个数,所以当状态中数和之前不符合就可以不算了。


#include <iostream>
#include <cstdio>
#include <cstring>
#define ll(x) (1<<x)
#define clr(f,z) memset(f,z,sizeof(f))
#define LL long long
using namespace std;
const int mm = 13;
int f[mm][mm];
LL dp[ll(mm)][502];
int bit[ll(mm)];
int n,m;
int lowbit(int x)
{
    return x&(x-1);
}
void debug()
{
    puts("_______________---");
    int z = ll(n)-1;
    for(int i=0;i<=z;++i)
    for(int j=0;j<m;++j)
        printf("%d%c",dp[i][j],'-');
    puts("-------------------");
}
LL DP()
{
  //clr(dp,0);

  int z = ll(n)-1;
  for(int i=0;i<=z;++i)
    for(int j=0;j<m;++j)
    dp[i][j] = 0;
   // debug();
  dp[0][0] = 1;
  bit[0] = 0;
  for(int i=1;i<=z;++i)
    bit[i] = bit[lowbit(i)]+1;
  for(int t=0;t<n;++t)
  {
      if(t == 0)
      {
        for(int i=0;i<n;++i)
            dp[ll(i)][f[0][i]] += dp[0][0];
      }
      else
      {
        for(int i=z;i>=1;--i)
        {
            if(bit[i] != t)
                continue;
            for(int j=m-1;j>=0;--j)
            for(int k=0;k<n;++k)
            if(dp[i][j] && (i&ll(k)) == 0 && j+f[t][k]<m)
            dp[i|ll(k)][j+f[t][k]] += dp[i][j];
        }
      }
  }
 // debug();
  LL ans = 0;
  for(int i=0;i<m;++i)
    ans += dp[z][i];
  return ans;
}
LL gcd(LL x,LL y)
{
    while(x!=0)
    {
        LL z = x;
        x = y % x;
        y = z;
    }
    return y;
}
int main()
{
    int cas;
    while(~scanf("%d",&cas))
    {
        while(cas--)
        {
            scanf("%d%d",&n,&m);
            for(int i=0;i<n;++i)
                for(int j=0;j<n;++j)
                    scanf("%d",&f[i][j]);
            LL num = DP();
            //cout<<"g"<<num<<endl;
            LL all = 1;
            for(int i=1;i<=n;++i)
                all *= i;
            num = all - num;
            LL g = gcd(num,all);

            all /= g;
            num /= g;
            if(num == 0)
                puts("No solution");
            else printf("%lld/%lld\n",all,num);
        }
    }
    return 0;
}


ZOJ Problem Set - 3777
Problem Arrangement

Time Limit: 2 Seconds      Memory Limit: 65536 KB

The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.

There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.

Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to Mpoints, the permutation is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).

The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).

Output

For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.

Sample Input
2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4
Sample Output
3/1
No solution

Author: DAI, Longao
Source: The 11th Zhejiang Provincial Collegiate Programming Contest
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值