HDU 4009 Transfer water (最小树形图,建图,4级)

本文介绍了一个村庄因洪水搬迁至山上后面临供水问题的解决方案。通过建立数学模型,使用图论中的最小生成树算法来确定每个家庭是打井还是建设输水管道更为经济,并考虑了家庭之间的相互关系限制。
E - Transfer water
Crawling in process... Crawling failed Time Limit:3000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64u
Appoint description:

Description

XiaoA lives in a village. Last year flood rained the village. So they decide to move the whole village to the mountain nearby this year. There is no spring in the mountain, so each household could only dig a well or build a water line from other household. If the household decide to dig a well, the money for the well is the height of their house multiplies X dollar per meter. If the household decide to build a water line from other household, and if the height of which supply water is not lower than the one which get water, the money of one water line is the Manhattan distance of the two households multiplies Y dollar per meter. Or if the height of which supply water is lower than the one which get water, a water pump is needed except the water line. Z dollar should be paid for one water pump. In addition,therelation of the households must be considered. Some households may do not allow some other households build a water line from there house. Now given the 3�dimensional position (a, b, c) of every household the c of which means height, can you calculate the minimal money the whole village need so that every household has water, or tell the leader if it can’t be done.
 

Input

Multiple cases.
First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000).
Each of the next n lines contains 3 integers a, b, c means the position of the i�th households, none of them will exceeded 1000.
Then next n lines describe the relation between the households. The n+i+1�th line describes the relation of the i�th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i�th household.
If n=X=Y=Z=0, the input ends, and no output for that.
 

Output

One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line.
 

Sample Input

     
2 10 20 30 1 3 2 2 4 1 1 2 2 1 2 0 0 0 0
 

Sample Output

     
30

Hint

In  3�dimensional  space  Manhattan  distance  of  point  A  (x1,  y1,  z1)  and  B(x2,  y2,  z2)  is |x2�x1|+|y2�y1|+|z2�z1|. 
 
 思路:算是半个模板题。每条边建权为u->v的花费。独立建井的花费就设一个超级源向所有点建边为建井花费。
   来遍最小树形图就OK了。
#include<cstdio>
#include<iostream>
#include<cstring>
#define FOR(i,a,b) for(int i=a;i<=b;++i)
#define clr(f,z) memset(f,z,sizeof(f))
typedef long long type;
using namespace std;
const int nn=1003;
const int mm=nn*nn+nn;
const type oo=1e18;
class point
{
  public:int x,y,z;
}p[nn];
class Edge
{
  public:int u,v;type w;
}e[mm];
type well[nn];
int n,X,Y,Z;
int fabs(int x)
{
  if(x<0)return -x;
  return x;
}
type get(int x,int y)
{
  type a,b,c;
  type ret=fabs(p[x].x-p[y].x)+fabs(p[x].y-p[y].y)+fabs(p[x].z-p[y].z);
  ret*=Y;
  if(p[x].z<p[y].z)ret+=Z;
  //if(well[y]<ret)ret=well[y];
  return ret;
}
type in[nn];
int vis[nn],pre[mm],id[nn];
type Directed_MST(int root,int V,int E)
{ int u,v;
  type ret=0;
  while(1)
  {
    FOR(i,0,V-1)in[i]=oo;
    in[root]=0;
    FOR(i,0,E-1)
    {
      u=e[i].u;v=e[i].v;
      if(u!=v&&e[i].w<in[v])
      {
        in[v]=e[i].w;pre[v]=u;
      }
    }
    FOR(i,0,V-1)
    {
      if(in[i]==oo)return -1;
    }
    //find cicle
    clr(vis,-1);clr(id,-1);
    int bcc_no=0;
    FOR(i,0,V-1)
    { ret+=in[i];
      v=i;
      while(vis[v]!=i&&id[v]==-1&&v!=root)
        vis[v]=i,v=pre[v];
      if(v!=root&&id[v]==-1)
      {
        for(int u=pre[v];u!=v;u=pre[u])
          id[u]=bcc_no;
        id[v]=bcc_no++;
      }
    }
    if(bcc_no==0)break;
    FOR(i,0,V-1)
    if(id[i]==-1)
      id[i]=bcc_no++;
    FOR(i,0,E-1)
    {
      u=e[i].u;v=e[i].v;
      e[i].u=id[u];
      e[i].v=id[v];
      if(id[u]^id[v])
      {
        e[i].w-=in[v];
      }
    }
    V=bcc_no;root=id[root];
  }
  return ret;
}
int main()
{ int m,num,x;
  while(~scanf("%d%d%d%d",&n,&X,&Y,&Z))
  {
    if(n==0&&X==0&&Y==0&&Z==0)break;
    FOR(i,1,n)
    {scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
     well[i]=X*p[i].z;
    }
    num=0;
    FOR(i,1,n)
    {
      scanf("%d",&m);
      FOR(j,1,m)
      {
        scanf("%d",&x);
        if(x==i)continue;
        e[num].u=i;e[num].v=x;e[num].w=get(i,x);
        ++num;
      }
    }
    //add src=0
    FOR(i,1,n)
    {
      e[num].u=0;e[num].v=i;e[num].w=well[i];++num;
    }
    type ans=Directed_MST(0,n+1,num);
    printf("%I64d\n",ans);
  }
  return 0;
}


一、 内容概要 本资源提供了一个完整的“金属板材压弯成型”非线性仿真案例,基于ABAQUS/Explicit或Standard求解器完成。案例精确模拟了模具(凸模、凹模)与金属板材之间的接触、压合过程,直至板材发生塑性弯曲成型。 模型特点:包含完整的模具-工件装配体,定义了刚体约束、通用接触(或面面接触)及摩擦系数。 材料定义:金属板材采用弹塑性材料模型,定义了完整的屈服强度、塑性应变等真实应力-应变数据。 关键结果:提供了成型过程中的板材应力(Mises应力)、塑性应变(PE)、厚度变化​ 云,以及模具受力(接触力)曲线,完整再现了压弯工艺的力学状态。 二、 适用人群 CAE工程师/工艺工程师:从事钣金冲压、模具设计、金属成型工艺分析与优化的专业人员。 高校师生:学习ABAQUS非线性分析、金属塑性成形理论,或从事相关课题研究的硕士/博士生。 结构设计工程师:需要评估钣金件可制造性(DFM)或预测成型回弹的设计人员。 三、 使用场景及目标 学习目标: 掌握在ABAQUS中设置金属塑性成形仿真的全流程,包括材料定义、复杂接触设置、边界条件与载荷步。 学习如何调试和分析大变形、非线性接触问题的收敛性技巧。 理解如何通过仿真预测成型缺陷(如减薄、破裂、回弹),并与理论或实验进行对比验证。 应用价值:本案例的模方法与分析思路可直接应用于汽车覆盖件、电器外壳、结构件等钣金产品的冲压工艺开发与模具设计优化,减少试模成本。 四、 其他说明 资源包内包含参数化的INP文件、CAE模型文件、材料数据参考及一份简要的操作要点说明文档。INP文件便于用户直接修改关键参数(如压边力、摩擦系数、行程)进行自主研究。 议使用ABAQUS 2022或更高版本打开。显式动力学分析(如用Explicit)对计算资源有一定要求。 本案例为教学与工程参考目的提供,用户可基于此框架进行拓展,应用于V型弯曲
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值