Hadoop高可用集群(HA)

本文详细介绍了一个包含Hadoop和Zookeeper的高可用集群搭建过程。包括集群规划、软件配置及环境准备、具体步骤如Zookeeper与Hadoop配置文件的设置、各组件启动顺序等。
[img]http://dl2.iteye.com/upload/attachment/0129/7999/fd251f2b-ed95-38aa-a37f-b8867bc410b7.png[/img]
一、集群的规划
Zookeeper集群:
192.168.157.12 (bigdata12)
192.168.157.13 (bigdata13)
192.168.157.14 (bigdata14)

Hadoop集群:
192.168.157.12 (bigdata12) NameNode1 ResourceManager1 Journalnode
192.168.157.13 (bigdata13) NameNode2 ResourceManager2 Journalnode
192.168.157.14 (bigdata14) DataNode1 NodeManager1
192.168.157.15 (bigdata15) DataNode2 NodeManager2

二、准备工作
1、安装JDK
2、配置环境变量
3、配置免密码登录
4、配置主机名

三、配置Zookeeper(在192.168.157.12安装)
在主节点(hadoop112)上配置ZooKeeper
(*)配置/root/training/zookeeper-3.4.6/conf/zoo.cfg文件
dataDir=/root/training/zookeeper-3.4.6/tmp

server.1=bigdata12:2888:3888
server.2=bigdata13:2888:3888
server.3=bigdata14:2888:3888

(*)在/root/training/zookeeper-3.4.6/tmp目录下创建一个myid的空文件
echo 1 > /root/training/zookeeper-3.4.6/tmp/myid

(*)将配置好的zookeeper拷贝到其他节点,同时修改各自的myid文件
scp -r /root/training/zookeeper-3.4.6/ bigdata13:/root/training
scp -r /root/training/zookeeper-3.4.6/ bigdata14:/root/training

四、安装Hadoop集群(在bigdata12上安装)
1、修改hadoo-env.sh
export JAVA_HOME=/root/training/jdk1.8.0_144

2、修改core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1</value>
</property>

<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/root/training/hadoop-2.7.3/tmp</value>
</property>

<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>bigdata12:2181,bigdata13:2181,bigdata14:2181</value>
</property>
</configuration>

3、修改hdfs-site.xml(配置这个nameservice中有几个namenode)
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>

<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>

<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>bigdata12:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>bigdata12:50070</value>
</property>

<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>bigdata13:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>bigdata13:50070</value>
</property>

<!-- 指定NameNode的日志在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://bigdata12:8485;bigdata13:8485;/ns1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/root/training/hadoop-2.7.3/journal</value>
</property>

<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>

<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>

<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>

<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>

<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>

4、修改mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

5、修改yarn-site.xml
<configuration>
<!-- 开启RM高可靠 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>

<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>

<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>

<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>bigdata12</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>bigdata13</value>
</property>

<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>bigdata12:2181,bigdata13:2181,bigdata14:2181</value>
</property>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

6、修改slaves
bigdata14
bigdata15

7、将配置好的hadoop拷贝到其他节点
scp -r /root/training/hadoop-2.7.3/ root@bigdata13:/root/training/
scp -r /root/training/hadoop-2.7.3/ root@bigdata14:/root/training/
scp -r /root/training/hadoop-2.7.3/ root@bigdata15:/root/training/

五、启动Zookeeper集群

六、在bigdata12和bigdata13上启动journalnode
hadoop-daemon.sh start journalnode

七、格式化HDFS(在bigdata12上执行)
1. hdfs namenode -format
2. 将/root/training/hadoop-2.7.3/tmp拷贝到bigdata13的/root/training/hadoop-2.7.3/tmp下
3. 格式化zookeeper
hdfs zkfc -formatZK
日志:17/07/13 00:34:33 INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/ns1 in ZK.


八、在bigdata12上启动Hadoop集群
start-all.sh

日志:
Starting namenodes on [bigdata12 bigdata13]
bigdata12: starting namenode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-namenode-hadoop113.out
bigdata13: starting namenode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-namenode-hadoop112.out
bigdata14: starting datanode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-datanode-hadoop115.out
bigdata15: starting datanode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-datanode-hadoop114.out

bigdata13: starting zkfc, logging to /root/training/hadoop-2.7.3/logs/hadoop-root-zkfc-bigdata13.out
bigdata12: starting zkfc, logging to /root/training/hadoop-2.7.3/logs/hadoop-root-zkfc-bigdata12.out


bigdata13上的ResourceManager需要单独启动
命令:yarn-daemon.sh start resourcemanager
内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发。
源码来自:https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值