《昇思 25 天学习打卡营第 11 天 | ResNet50 图像分类 》

《昇思 25 天学习打卡营第 11 天 | ResNet50 图像分类 》

活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp
签名:Sam9029


计算机视觉-图像分类,很感兴趣

且今日精神颇佳,一个字,学啊

上一节(ResNet50 迁移学习)直接应用了 ResNet50 模型却没有解释概念

这一节解释,虽然提前去了解了,还是温习一下

ResNet 网络: ResNet50 网络是 2015 年由微软实验室的何恺明提出,获得 ILSVRC2015 图像分类竞赛第一名。主要的特征如下:

残差学习(最重要的概念):ResNet50 的核心思想是引入了“残差学习”框架。在深度网络中,如果层数太多,网络的训练可能会变得困难,因为每增加一层,网络的性能反而可能下降。残差学习通过添加跳过(skip connections)或快捷连接(shortcut connections)解决了这个问题,允许网络学习残差函数,而不是直接学习未映射的特征表示。

层叠结构:ResNet50 包含 50 层深的网络结构,这些层被组织成多个残差块(residual blocks)。每个残差块包含两个卷积层,后面跟着批量归一化(Batch Normalization)和 ReLU 激活函数。

批量归一化:ResNet50 在每个卷积层之后使用批量归一化,这有助于加速收敛速度,同时减少对初始化的敏感性。

恒等快捷连接:在每个残差块中,输入通过一个恒等快捷连接(identity shortcut connection)直接添加到块的输出。这保证了在网络训练过程中,梯度可以有效地流动到较浅的层。

性能:由于其设计,ResNet50 在多个标准数据集(如 ImageNet 和 COCO)上表现出色,成为了许多计算机视觉任务的基准模型。

意思是啥呢?

看完了也不是很懂,但只要明白一个概念,就是很厉害,比起传统的 卷积化神经网络模型,resNet50 性能和识别误差都更小。

传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。

ResNet 网络模型就提出了残差网络结构(Residual Network)来减轻退化问题,使用 ResNet 网络可以实现搭建较深的网络结构(突破 1000 层)

使用实践

学习完概念,当然少不了实践拉,这次使用 CIFAR-10数据集 来进行 图像分类的模型训练

下载数据集
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"

download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)

CIFAR-10 数据集主要是一些 airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck,可查看(datasets-cifar10-bin/cifar-10-batches-bin/batches.meta.text)

  • 然后是一些 数据增强操作,略过

构建 ResNet50 网络模型

残差网络结构(Residual Network)是 ResNet 网络的主要亮点,ResNet 使用残差网络结构后可有效地减轻退化问题,实现更深的网络结构设计,提高网络的训练精度。

构建残差网络结构

请添加图片描述

这里的原理概念太难懂了,直接说主要特征和使用

残差网络结构主要由两种:

  • 一种是 Building Block,适用于较浅的 ResNet 网络,如 ResNet18 和 ResNet34;

  • 另一种是 Bottleneck,适用于层数较深的 ResNet 网络,如 ResNet50、ResNet101 和 ResNet152。

这一节使用 ResNet50 来构建 图像识别模型所以,我注重记录一下 Bottleneck 网络的构建

class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU()
        self.down_sample = down_sample

    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值