问题:在有向图 ( 只有1 个开始节点, 1 个结束节点) 中判断任意两个节点是否为相同层次,不考虑环的情况,
A,B为相同层次可以理解为经过A的数据流必然经过B,经过B的数据流也必然经过了A
例
a>b
a>c
b>d
c>d
其中 b ,c 节点为并行节点,都完成之后到达 d 节点,其中a , d为相同层次 ,a,b;b,d;b,c 都不是相同层次
另外一个例子
a>b
a>c
b>c
c>d
b>d
其中 a,d 为相同层次,其他都不是
/**
* 算法核心思想:
* a的数据流必经过b的深刻含义为,a的数据流无论从哪条路走都必须经过b,这就要求a的相邻节点也具有该特性;
* 同理将有向图反向,b的数据流也必经过a
*/
public class SameLevel {
//n为节点个数,e为有向边个数
private static int n,e;
//有向图正向临接表
private static Map<Character,LinkedList<Character>> adjacencyMap = new HashMap<Character,LinkedList<Character>>();
//有向图反向临接表
private static Map<Character,LinkedList<Character>> adjacencyReverseMap = new HashMap<Character,LinkedList<Character>>();
/*
* 创建正向与反向临接表
* 输入格式参考如下:
* 4 4 //输入节点个数与有向边数
* a b c d //输入各个节点
* a b // 以下四行有输入的有向边
* a c
* b d
* c d
* a d //输入需要判断层次的任意两个节点
*/
public static boolean createGraph(Scanner sc){
n = sc.nextInt(); e = sc.nextInt();
if(n == 0 || e == 0) return false;
for(int i=0;i<n;i++){
char c = sc.next().toCharArray()[0];
adjacencyMap.put(c,new LinkedList<Character>()); adjacencyReverseMap.put(c,new LinkedList<Character>());
}
for(int i=0;i<e;i++){
char c = sc.next().toCharArray()[0],d = sc.next().toCharArray()[0];
LinkedList<Character> list = adjacencyMap.get(c), rlist = adjacencyReverseMap.get(d);
list.addFirst(d); rlist.addFirst(c);
}
return true;
}
/*
* 判断a是否从任意路径可达b
*/
public static boolean DFSTraverseAtoB(char a ,char b , boolean []visited){
if(a == b) return true;
boolean ret = true;
LinkedList<Character> adjacentList = adjacencyMap.get(a);
for(char c : adjacentList){
Arrays.fill(visited,false);
if(!DFS(c,b,visited) || !DFSTraverseAtoB(c,b,visited)){
ret = false;
break;
}
}
return ret;
}
/*
* 深度优先遍历算法
*/
public static boolean DFS(char a , char b , boolean[] visited){
if(a == b){
return true;
}
visited[a] = true;
LinkedList<Character> adjacentList = adjacencyMap.get(a);
for(char c : adjacentList){
if(!visited[c]){
if(DFS(c,b,visited)){
return true;
}
}
}
return false;
}
/*
* 判断两个节点是否是同一层次
*/
public static boolean isSameLevel(char a ,char b){
boolean ret = false,ret1 = false;
if(!adjacencyMap.containsKey(a) || !adjacencyMap.containsKey(b)){
throw new RuntimeException("Node Doesn't exist!");
}
boolean[] visited = new boolean[256];
ret = DFSTraverseAtoB(a ,b ,visited);
adjacencyMap = adjacencyReverseMap;
//有向图反向再判断一次
ret1 = DFSTraverseAtoB(b,a ,visited);
return ret && ret1;
}
public static void main(String[]args){
Scanner sc = new Scanner(System.in);
boolean created = createGraph(sc);
if(!created){
throw new RuntimeException("Create graph failed!");
}
Character a = sc.next().toCharArray()[0],b = sc.next().toCharArray()[0];
boolean ret = isSameLevel(a,b);
System.out.println(ret);
}
}
由于上述代码不够灵活,效率不高,且不好测试,重构后的代码如下:
public class SameLevel {
//n为节点个数,e为有向边个数
private static int n,e;
//有向图正向临接表
private static Map<Character,LinkedList<Character>> adjacencyMap = new HashMap<Character,LinkedList<Character>>();
//有向图反向临接表
private static Map<Character,LinkedList<Character>> adjacencyReverseMap = new HashMap<Character,LinkedList<Character>>();
//填充正向与反向临接表
private static void fullMap(Map<Character,LinkedList<Character>> map,Character a,Character b){
if(!map.containsKey(a)){
map.put(a,new LinkedList<Character>());
}
map.get(a).add(b);
if(!map.containsKey(b)){
map.put(b,new LinkedList<Character>());
}
}
/*
* 根据输入的map创建图
*/
public static boolean createGraph(Set<Edge<Character>> set){
if(set == null || set.size() == 0) return false;
for(Edge<Character> edge : set){
Character key = edge.getStart(),value = edge.getEnd();
fullMap(adjacencyMap,key,value);
fullMap(adjacencyReverseMap,value,key);
}
return true;
}
/*
* 判断a是否从任意路径可达b
*/
public static boolean DFSTraverseAtoB(char a ,char b){
if(a == b) return true;
boolean ret = false;
LinkedList<Character> adjacentList = adjacencyMap.get(a);
for(char c : adjacentList){
if(!DFSTraverseAtoB(c,b)){
return false;
}
ret = true;
}
return ret;
}
/*
* 判断两个节点是否是同一层次
*/
public static boolean isSameLevel(char a ,char b, Set<Edge<Character>> set){
if(set == null || set.size() == 0) return false;
boolean ret = false,ret1 = false,created = createGraph(set);
if(!created || !adjacencyMap.containsKey(a) || !adjacencyMap.containsKey(b)){
throw new RuntimeException("Error!");
}
ret = DFSTraverseAtoB(a ,b);
adjacencyMap = adjacencyReverseMap;
//有向图反向再判断一次
ret1 = DFSTraverseAtoB(b,a);
return ret && ret1;
}
/*
*
*/
public static void main(String[]args){
Set<Edge<Character>> set = new HashSet<Edge<Character>>();
set.add(new Edge<Character>('a','b'));
set.add(new Edge<Character>('b','c'));
set.add(new Edge<Character>('b','d'));
set.add(new Edge<Character>('d','e'));
set.add(new Edge<Character>('c','d'));
System.out.println(isSameLevel('a','d',set));
}
/*
* 定义有向图的边对象
* @start 为边的起点
* @end 为边的终点
*/
static class Edge<T>{
private T start;
private T end;
public T getStart() {
return start;
}
public void setStart(T start) {
this.start = start;
}
public T getEnd() {
return end;
}
public void setEnd(T end) {
this.end = end;
}
public Edge(T start,T end){
this.start = start;
this.end = end;
}
}
}
https://gist.github.com/narutolby/8348153#file-gistfile1-java
1万+

被折叠的 条评论
为什么被折叠?



