AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习

定义

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\{ (x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\} T={(x1,y1),(x2,y2),,(xN,yN)},其中, x i ∈ χ ⊆ R n , y i ∈ y = { − 1 , + 1 } x_i \in \chi\subseteq R^n, y_i \in {\tt y}=\{ -1,+1 \} xiχRn,yiy={ 1,+1};弱学习算法;

输出:最终分类器 G ( x ) 。 G(x)。 G(x)

(1)初始化训练数据的权值分布
D 1 = ( ω 11 , ⋯   , ω 1 i , ⋯   , ω 1 N ) , ω 1 i = 1 N , i = 1 , 2 , ⋯   , N D_1=\big( \omega_{11},\cdots,\omega_{1i},\cdots,\omega_{1N} \big),\omega_{1i}=\frac{1}{N},i=1,2,\cdots,N D1=(ω11,,ω1i,,ω1N),ω1i=N1,i=1,2,,N
(2)对 m = 1 , 2 , ⋯   , M m=1,2,\cdots,M m=1,2,,M
      
(a)使用具有权值分布 D m D_m Dm的训练数据集学习,得到基本分类器
G m ( x ) : χ → { − 1 , + 1 } G_m(x): \chi \rightarrow \{ -1,+1 \} Gm(x):χ{ 1,+1}
      
(b)计算 G m ( x ) G_m(x) Gm(x)在训练数据集上的分类误差率
e m = ∑ i = 1 N P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N ω m i I ( G m ( x i ) ≠ y i ) e_m=\sum_{i=1}^N P(G_m(x_i) \ne y_i) = \sum_{i=1}^N \omega_{mi}I(G_m(x_i) \ne y_i ) em=i=1NP(Gm(xi)=yi)=i=1NωmiI(Gm(xi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值