图像变换增强库

 

图像样本太少时,可以用作自动生成图像样本。

pip install imgaug
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa


ia.seed(1)

# Example batch of images.
# The array has shape (32, 64, 64, 3) and dtype uint8.
images = np.array(
    [ia.quokka(size=(64, 64)) for _ in range(32)],
    dtype=np.uint8
)

seq = iaa.Sequential([
    iaa.Fliplr(0.5), # horizontal flips
    iaa.Crop(percent=(0, 0.1)), # random crops
    # Small gaussian blur with random sigma between 0 and 0.5.
    # But we only blur about 50% of all images.
    iaa.Sometimes(
        0.5,
        iaa.GaussianBlur(sigma=(0, 0.5))
    ),
    # Strengthen or weaken the contrast in each image.
    iaa.LinearContrast((0.75, 1.5)),
    # Add gaussian noise.
    # For 50% of all images, we sample the noise once per pixel.
    # For the other 50% of all images, we sample the noise per pixel AND
    # channel. This can change the color (not only brightness) of the
    # pixels.
    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
    # Make some images brighter and some darker.
    # In 20% of all cases, we sample the multiplier once per channel,
    # which can end up changing the color of the images.
    iaa.Multiply((0.8, 1.2), per_channel=0.2),
    # Apply affine transformations to each image.
    # Scale/zoom them, translate/move them, rotate them and shear them.
    iaa.Affine(
        scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
        translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
        rotate=(-25, 25),
        shear=(-8, 8)
    )
], random_order=True) # apply augmenters in random order

images_aug = seq(images=images)

 

https://github.com/aleju/imgaug

https://imgaug.readthedocs.io/en/latest/source/examples_basics.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值