A common clock framework (from LWN)

文章详细介绍了ARM内核中统一时钟框架的设计与实施过程,旨在减少不同平台间的代码重复,并通过引入通用时钟框架简化跨平台时钟管理。讨论了时钟框架的基本结构、操作API及其工作原理,包括时钟节点的组织、频率调整、状态控制等功能,以及通知机制和硬件信息获取等关键特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

One of the big problem areas that has been identified in the ARM kerneltrees is the diversity of implementations for various things that could beshared—either within the ARM tree or more widely with the rest of thekernel. That problem has led to a large amount of duplicated code in theARM tree, both via cut-and-paste and code that is conceptually similar butuses different data structures and APIs. The latter makes the creation ofa single kernel image that can boot on multiple ARM platforms impossible, sothere are efforts to consolidate these implementations. The common clockframework is one such effort.

In a typical ARM system-on-chip (SoC), there can be dozens of differentclocks for use by various I/O and other devices in the SoC. Typicallythose clocks are hooked together into elaborate tree-like structures. Inthose trees, child clocks can sometimes only change their frequency if the parent(and any other children) are correspondingly changed; disabling certainclocks will affect other clocks in the system and so on. Each ARMplatform/SoC has its own way of encapsulating that information andpresenting it to other parts of the system (like power and thermalmanagement controllers), which makes it difficult to createplatform-independent solutions.

The first problem that a common clock framework faces is the sheer numberof different struct clk definitions scattered throughout the ARMtree. There are more than two dozen definitions in arch/armcurrently, but the proposal for a commonframework not surprisingly reduces that number to one. Implementations canwrap the struct clk in another structure that holdshardware-specific data, but the common structure looks like:

    struct clk {
	const char                  *name;
	const struct clk_hw_ops     *ops;
	struct clk                  *parent;
	unsigned long               rate;
	unsigned long               flags;
	unsigned int                enable_count;
	unsigned int                prepare_count;
	struct hlist_head           children;
	struct hlist_node           child_node;
    };

The parent and children/child_node fields allowthe clocks to be arrangedinto trees, while the rate field tracks the current clock frequency (in Hz). Theflags field is used to describe the clocktype (e.g. whether a rate change needs to be done on the parent clock, orthat the clock must be disabled before changing the rate). The two *_count fields are for tracking calls to the enableand prepare operations, while the bulk of the "work" is done within thestruct clk_hw_ops field (ops).

Each of the entries in the clk_hw_ops structure correspond to afunction in the driver-facing API for the clock framework. That API doessome sanity checking before calling the corresponding operation fromclk_hw_ops:

    struct clk_hw_ops {
	int             (*prepare)(struct clk *clk);
	void            (*unprepare)(struct clk *clk);
	int             (*enable)(struct clk *clk);
	void            (*disable)(struct clk *clk);
	unsigned long   (*recalc_rate)(struct clk *clk);
	long            (*round_rate)(struct clk *clk, unsigned long,
				      unsigned long *);
	int             (*set_parent)(struct clk *clk, struct clk *);
	struct clk *    (*get_parent)(struct clk *clk);
	int             (*set_rate)(struct clk *clk, unsigned long);
    };
clk_prepare() is used to initializethe clock to a state where it could be enabled, and that call must be madebefore clk_enable(), which actually starts the clock running. clk_disable() and clk_unprepare() do the reverse andshould be called in that order. The difference is that clk_prepare() can sleep, while clk_enable() must not, sohaving two separate calls allows the clock initialization to be split intoatomic and non-atomic pieces.

clk_get_parent() and clk_set_parent() do what the namesimply, simply returning or changing the parentfield, though setting the parent only succeeds if the clock is not alreadyin use (otherwise -EBUSY is returned). clk_recalc_rate() queriesthe hardware, rather than the cached rate field, for the current frequency of theclock. clk_round_rate() rounds a frequency in Hz to a rate thatthe clock can actually use, and can also be used to determine the correctfrequency for the parent clock when changing rates. All of those are more or less helper functionsfor clk_set_rate().

clk_set_rate() changes the frequency of a clock, but it must takeinto account some other factors. If the CLK_PARENT_SET_RATE flagvalue is set for the clock, clk_set_rate() needs to propagate thechange to the parent clock (which may also have that flag set,necessitating a recursive traversal of the tree, attempting to set the rateat each level).

Drivers can also register their interest in being notified of rate changeswith the clk_notifier_register() function. Three different typesof notification can be requested: before the clock's ratechanges, after it has been changed, or if the change gets aborted after thepre-change notifications have been called (i.e. PRE_RATE_CHANGE,POST_RATE_CHANGE, and ABORT_RATE_CHANGE). In each case,both the old and new values for the rate get passed as part of thenotification callback. The patch to add notificationscreates another operation in clk_hw_ops calledspeculate_rate(), which notes potential rate changes and sends any needed pre-changenotifications as it walks the sub-tree.

The patch set also exports the clock hierarchy into debugfs. Eachtop-level clock gets a directory in ../debug/clk that containsread-only files to report the clock's rate, flags, prepare and enablecounts, and the number of notifiers registered. Subdirectories are createdfor each child clock containing the same information.

The common clock framework has been around for some time in various forms.The current incarnation is being shepherded by Mike Turquette, but he notesthat it is based on work originally done by Jeremy Kerr and BenHerrenschmidt. Beyond that: "Many others contributed to thosepatches and promptly had their work stolen by me". Turquette has also posted a patch set withan examplethat replaces the OMAP4 clocks using the framework.

The comments onthe most recent iteration have been fairly light, but still substantive, sowe are clearly a ways off from seeing a version in the mainline. It'sclearly on the radar of ARM developers, and would clean up a fair amount ofcode duplication within that tree, so we should see something in themainline soon—hopefully in one of the next few kernel releases.


( Log in to post comments)


基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值