Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7]
and target 7
,
A solution set is:
[ [7], [2, 2, 3] ]
Subscribe to see which companies asked this question
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if (candidates == null) {
return result;
}
List<Integer> path = new ArrayList<Integer>();
Arrays.sort(candidates);
helper(candidates, target, path, 0, result);
return result;
}
void helper(int[] candidates, int target, List<Integer> path, int index,
List<List<Integer>> result) {
if (target == 0) {
result.add(new ArrayList<Integer>(path));
return;
}
int prev = -1;
for (int i = index; i < candidates.length; i++) {
if (candidates[i] > target) {
break;
}
if (prev != -1 && prev == candidates[i]) {
continue;
}
path.add(candidates[i]);
helper(candidates, target - candidates[i], path, i, result);
path.remove(path.size() - 1);
prev = candidates[i];
}
}
}
public class Solution {
List<List<Integer>> ans = new ArrayList<List<Integer>>();
int[] cans = {};
public List<List<Integer>> combinationSum(int[] candidates, int target) {
this.cans = candidates;
Arrays.sort(cans);
backTracking(new ArrayList(), 0, target);
return ans;
}
public void backTracking(List<Integer> cur, int from, int target) {
if (target == 0) {
List<Integer> list = new ArrayList<Integer>(cur);
ans.add(list);
} else {
for (int i = from; i < cans.length && cans[i] <= target; i++) {
cur.add(cans[i]);
backTracking(cur, i, target - cans[i]);
cur.remove(new Integer(cans[i]));
}
}
}
}