书生大模型实战营闯关 - 基础岛 - OpenCompass 评测 InternLM-1.8B 实践

本文将进行使用 OpenCompass 来评测 InternLM2 1.8B实践

课程内容

在这里插入图片描述

在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。

  • 配置:这是整个工作流的起点。您需要配置整个评估过程,选择要评估的模型和数据集。此外,还可以选择评估策略、计算后端等,并定义显示结果的方式。
  • 推理与评估:在这个阶段,OpenCompass 将会开始对模型和数据集进行并行推理和评估。推理阶段主要是让模型从数据集产生输出,而评估阶段则是衡量这些输出与标准答案的匹配程度。这两个过程会被拆分为多个同时运行的“任务”以提高效率。
  • 可视化:评估完成后,OpenCompass 将结果整理成易读的表格,并将其保存为 CSV 和 TXT 文件。

接下来,我们将展示 OpenCompass 的基础用法,分别用命令行方式和配置文件的方式评测InternLM2-Chat-1.8B,展示书生浦语在 C-Eval 基准任务上的评估。更多评测技巧请查看 Quick Start文档

评测工作是非常重要的
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


闯关任务

首先创建环境

conda create -n opencompass python=3.10
conda activate opencompass
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y

# 注意:一定要先 cd /root
cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .


apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf

准备评测数据集

解压评测数据集到 /root/opencompass/data/ 处。(注意: 上方在git clone opencompass 时一定要将 opencompass clone 到 /root 路径下)

cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

将会在 OpenCompass 下看到data文件夹

配置InternLM和ceval 相关的配置文件

列出所有跟 InternLM 及 C-Eval 相关的配置

 python tools/list_configs.py internlm ceval

将会看到

    +----------------------------------------+----------------------------------------------------------------------+
    | Model                                  | Config Path                                                          |
    |----------------------------------------+----------------------------------------------------------------------|
    | hf_internlm2_1_8b                      | configs/models/hf_internlm/hf_internlm2_1_8b.py                      |
    | hf_internlm2_20b                       | configs/models/hf_internlm/hf_internlm2_20b.py                       |
    | hf_internlm2_7b                        | configs/models/hf_internlm/hf_internlm2_7b.py                        |
    | hf_internlm2_base_20b                  | configs/models/hf_internlm/hf_internlm2_base_20b.py                  |
    | hf_internlm2_base_7b                   | configs/models/hf_internlm/hf_internlm2_base_7b.py                   |
    | hf_internlm2_chat_1_8b                 | configs/models/hf_internlm/hf_internlm2_chat_1_8b.py                 |
    | hf_internlm2_chat_1_8b_sft             | configs/models/hf_internlm/hf_internlm2_chat_1_8b_sft.py             |
    | hf_internlm2_chat_20b                  | configs/models/hf_internlm/hf_internlm2_chat_20b.py                  |
    | hf_internlm2_chat_20b_sft              | configs/models/hf_internlm/hf_internlm2_chat_20b_sft.py              |
    | hf_internlm2_chat_20b_with_system      | configs/models/hf_internlm/hf_internlm2_chat_20b_with_system.py      |
    | hf_internlm2_chat_7b                   | configs/models/hf_internlm/hf_internlm2_chat_7b.py                   |
    | hf_internlm2_chat_7b_sft               | configs/models/hf_internlm/hf_internlm2_chat_7b_sft.py               |
    | hf_internlm2_chat_7b_with_system       | configs/models/hf_internlm/hf_internlm2_chat_7b_with_system.py       |
    | hf_internlm2_chat_math_20b             | configs/models/hf_internlm/hf_internlm2_chat_math_20b.py             |
    | hf_internlm2_chat_math_20b_with_system | configs/models/hf_internlm/hf_internlm2_chat_math_20b_with_system.py |
    | hf_internlm2_chat_math_7b              | configs/models/hf_internlm/hf_internlm2_chat_math_7b.py              |
    | hf_internlm2_chat_math_7b_with_system  | configs/models/hf_internlm/hf_internlm2_chat_math_7b_with_system.py  |
    | hf_internlm_20b                        | configs/models/hf_internlm/hf_internlm_20b.py                        |
    | hf_internlm_7b                         | configs/models/hf_internlm/hf_internlm_7b.py                         |
    | hf_internlm_chat_20b                   | configs/models/hf_internlm/hf_internlm_chat_20b.py                   |
    | hf_internlm_chat_7b                    | configs/models/hf_internlm/hf_internlm_chat_7b.py                    |
    | hf_internlm_chat_7b_8k                 | configs/models/hf_internlm/hf_internlm_chat_7b_8k.py                 |
    | hf_internlm_chat_7b_v1_1               | configs/models/hf_internlm/hf_internlm_chat_7b_v1_1.py               |
    | internlm_7b                            | configs/models/internlm/internlm_7b.py                               |
    | ms_internlm_chat_7b_8k                 | configs/models/ms_internlm/ms_internlm_chat_7b_8k.py                 |
    +----------------------------------------+----------------------------------------------------------------------+
    +--------------------------------+-------------------------------------------------------------------+
    | Dataset                        | Config Path                                                       |
    |--------------------------------+-------------------------------------------------------------------|
    | ceval_clean_ppl                | configs/datasets/ceval/ceval_clean_ppl.py                         |
    | ceval_contamination_ppl_810ec6 | configs/datasets/contamination/ceval_contamination_ppl_810ec6.py  |
    | ceval_gen                      | configs/datasets/ceval/ceval_gen.py                               |
    | ceval_gen_2daf24               | configs/datasets/ceval/ceval_gen_2daf24.py                        |
    | ceval_gen_5f30c7               | configs/datasets/ceval/ceval_gen_5f30c7.py                        |
    | ceval_ppl                      | configs/datasets/ceval/ceval_ppl.py                               |
    | ceval_ppl_1cd8bf               | configs/datasets/ceval/ceval_ppl_1cd8bf.py                        |
    | ceval_ppl_578f8d               | configs/datasets/ceval/ceval_ppl_578f8d.py                        |
    | ceval_ppl_93e5ce               | configs/datasets/ceval/ceval_ppl_93e5ce.py                        |
    | ceval_zero_shot_gen_bd40ef     | configs/datasets/ceval/ceval_zero_shot_gen_bd40ef.py              |
    | configuration_internlm         | configs/datasets/cdme/internlm2-chat-7b/configuration_internlm.py |
    | modeling_internlm2             | configs/datasets/cdme/internlm2-chat-7b/modeling_internlm2.py     |
    | tokenization_internlm          | configs/datasets/cdme/internlm2-chat-7b/tokenization_internlm.py  |
    +--------------------------------+-------------------------------------------------------------------+

启动评测 (10% A100 8GB 资源)

使用命令行配置参数法进行评测

打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py ,贴入以下代码

    from opencompass.models import HuggingFaceCausalLM
    
    
    models = [
        dict(
            type=HuggingFaceCausalLM,
            abbr='internlm2-1.8b-hf',
            path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
            tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
            model_kwargs=dict(
                trust_remote_code=True,
                device_map='auto',
            ),
            tokenizer_kwargs=dict(
                padding_side='left',
                truncation_side='left',
                use_fast=False,
                trust_remote_code=True,
            ),
            max_out_len=100,
            min_out_len=1,
            max_seq_len=2048,
            batch_size=8,
            run_cfg=dict(num_gpus=1, num_procs=1),
        )
    ]

确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出。

    #环境变量配置
    export MKL_SERVICE_FORCE_INTEL=1
    #或
    export MKL_THREADING_LAYER=GNU

<!---->

    python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug

命令解析

    python run.py
    --datasets ceval_gen \ # 数据集准备
    --models hf_internlm2_chat_1_8b \  # 模型准备
    --debug

屏幕上显示:

    [2024-08-09 16:48:07,016] [opencompass.openicl.icl_inferencer.icl_gen_inferencer] [INFO] Starting inference process...

评测完成后,评测结果位于: /root/opencompass/outputs/default/20240812_224546/summary/summary_20240812_224546.txt


    dataset                                         version    metric         mode    internlm2-1.8b-hf
    ----------------------------------------------  ---------  -------------  ------  -----------------------
20240812_224546
tabulate format
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
dataset                                         version    metric    mode      internlm2-1.8b-hf
----------------------------------------------  ---------  --------  ------  -------------------
ceval-computer_network                          db9ce2     accuracy  gen                   47.37
ceval-operating_system                          1c2571     accuracy  gen                   47.37
ceval-computer_architecture                     a74dad     accuracy  gen                   23.81
ceval-college_programming                       4ca32a     accuracy  gen                   27.03
ceval-college_physics                           963fa8     accuracy  gen                   42.11
ceval-college_chemistry                         e78857     accuracy  gen                   37.5
ceval-advanced_mathematics                      ce03e2     accuracy  gen                   26.32
ceval-probability_and_statistics                65e812     accuracy  gen                   22.22
ceval-discrete_mathematics                      e894ae     accuracy  gen                   25
ceval-electrical_engineer                       ae42b9     accuracy  gen                   27.03
ceval-metrology_engineer                        ee34ea     accuracy  gen                   54.17
ceval-high_school_mathematics                   1dc5bf     accuracy  gen                   22.22
ceval-high_school_physics                       adf25f     accuracy  gen                   42.11
ceval-high_school_chemistry                     2ed27f     accuracy  gen                   52.63
ceval-high_school_biology                       8e2b9a     accuracy  gen                   26.32
ceval-middle_school_mathematics                 bee8d5     accuracy  gen                   36.84
ceval-middle_school_biology                     86817c     accuracy  gen                   80.95
ceval-middle_school_physics                     8accf6     accuracy  gen                   47.37
ceval-middle_school_chemistry                   167a15     accuracy  gen                   80
ceval-veterinary_medicine                       b4e08d     accuracy  gen                   43.48
ceval-college_economics                         f3f4e6     accuracy  gen                   32.73
ceval-business_administration                   c1614e     accuracy  gen                   39.39
ceval-marxism                                   cf874c     accuracy  gen                   68.42
ceval-mao_zedong_thought                        51c7a4     accuracy  gen                   70.83
ceval-education_science                         591fee     accuracy  gen                   55.17
ceval-teacher_qualification                     4e4ced     accuracy  gen                   59.09
ceval-high_school_politics                      5c0de2     accuracy  gen                   57.89
ceval-high_school_geography                     865461     accuracy  gen                   47.37
ceval-middle_school_politics                    5be3e7     accuracy  gen                   76.19
ceval-middle_school_geography                   8a63be     accuracy  gen                   75
ceval-modern_chinese_history                    fc01af     accuracy  gen                   52.17
ceval-ideological_and_moral_cultivation         a2aa4a     accuracy  gen                   73.68
ceval-logic                                     f5b022     accuracy  gen                   31.82
ceval-law                                       a110a1     accuracy  gen                   29.17
ceval-chinese_language_and_literature           0f8b68     accuracy  gen                   47.83
ceval-art_studies                               2a1300     accuracy  gen                   42.42
ceval-professional_tour_guide                   4e673e     accuracy  gen                   51.72
ceval-legal_professional                        ce8787     accuracy  gen                   34.78
ceval-high_school_chinese                       315705     accuracy  gen                   36.84
ceval-high_school_history                       7eb30a     accuracy  gen                   65
ceval-middle_school_history                     48ab4a     accuracy  gen                   86.36
ceval-civil_servant                             87d061     accuracy  gen                   42.55
ceval-sports_science                            70f27b     accuracy  gen                   52.63
ceval-plant_protection                          8941f9     accuracy  gen                   40.91
ceval-basic_medicine                            c409d6     accuracy  gen                   68.42
ceval-clinical_medicine                         49e82d     accuracy  gen                   36.36
ceval-urban_and_rural_planner                   95b885     accuracy  gen                   52.17
ceval-accountant                                002837     accuracy  gen                   36.73
ceval-fire_engineer                             bc23f5     accuracy  gen                   38.71
ceval-environmental_impact_assessment_engineer  c64e2d     accuracy  gen                   51.61
ceval-tax_accountant                            3a5e3c     accuracy  gen                   36.73
ceval-physician                                 6e277d     accuracy  gen                   42.86
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
                                                                                
        
使用配置文件修改参数法进行评测

除了通过命令行配置实验外,OpenCompass 还允许用户在配置文件中编写实验的完整配置,并通过 run.py 直接运行它。配置文件是以 Python 格式组织的,并且必须包括 datasets 和 models 字段。本次测试配置在 configs文件夹 中。此配置通过 继承机制 引入所需的数据集和模型配置,并以所需格式组合 datasets 和 models 字段。
运行以下代码,在configs文件夹下创建eval_tutorial_demo.py

cd /root/opencompass/configs
touch eval_tutorial_demo.py

打开eval_tutorial_demo.py 贴入以下代码

from mmengine.config import read_base

with read_base():
    from .datasets.ceval.ceval_gen import ceval_datasets
    from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models

datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models

因此,运行任务时,我们只需将配置文件的路径传递给 run.py:

cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值