python在财务分析中的应用,用python做财务数据分析

大家好,小编为大家解答python在财务分析中的应用的问题。很多人还不知道用python做财务数据分析,现在让我们一起来看看吧!

 本次案例还是适合人文社科领域,金融或者新闻专业。本科生做线性回归和主成分回归就够了,研究生还可以加随机森林回归,其方法足够人文社科领域的硕士毕业论文了小神猪


案例背景

有八个自变量,['微博平台可信度','专业性','可信赖性','转发量','微博内容质量','时效性','验证程度','人际信任']   ,一个因变量: 投资信息可信度。

研究这八个自变量对因变量的影响。


数据读取

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns
from sklearn.preprocessing import StandardScaler
import statsmodels.formula.api as smf
plt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号
sns.set_style("darkgrid",{"font.sans-serif":['KaiTi', 'Arial']})

读取,我数据格式这里是spss 的sav格式,但是python也能读取。

# 读取数据清洗后的数据
spss = pd.read_spss('数据2.sav')
#spss

选取需要的变量,展示前五行

data=spss[['微博平台可信','专业性','可信赖性','转发量','微博内容质量','时效性','验证程度','人际信任','投资信息可信度']]
data.head()

取出列名称

columns1=data.columns

描述性统计,算一下均值方差分位数等等

data.describe()  #描述性统计

我这数据量并不多.... 

取出X和y

X=data.iloc[:,:-1]
y=data.iloc[:,-1]


画图展示

对八个自变量和一个因变量画箱线图 

column = data.columns.tolist() # 列表头
fig = plt.figure(figsize=(10,10), dpi=128)  # 指定绘图对象宽度和高度
for i in range(9):
    plt.subplot(3,3, i + 1)  # 2行3列子图
    sns.boxplot(data=data[column[i]], orient="v",width=0.5)  # 箱式图
    plt.ylabel(column[i], fontsize=16)
plt.tight_l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值