神经网络的图像识别技术,神经网络识别图像原理

深度学习是怎么识别人脸的

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。

卷积神经网络(CNN)局部连接传统的神经网络是全连接,即一层的神经元与上一层的所有神经元都建立连接,这样导致参数非常多,计算量非常大,而CNN是局部连接,一层的神经元只与上一层的部分神经元建立连接,这样可以减少参数和计算量。

Technology-MachineLearning-FaceRegonition-CNN-LocalConnected权值共享给一张输入图片,用一个filter去扫时,filter里面的数就叫权重。

用该filter对整个图片进行了某个特征的扫描,例如Edgedetection,这个过程就是权值共享,因为权重不变。

Technology-MachineLearning-FaceRegonition-CNN-WeightSharing人脸识别多个CNN加其他层,遍历而成的人脸识别处理结构:Technology-MachineLearning-FaceRegonition-CNN-Example层提取到的信息的演进:Technology-MachineLearning-FaceRegonition-CNN-Example2人脸检测传统算法识别:滑动窗口+分类器用一个固定大小的窗口去滑动扫描图像,并通过分类器去分辨是否是人脸。

有时候人脸在图片中过小,所以还要通过放大图片来扫描。

Technology-MachineLearning-FaceRegonition-Window&Classifier训练:特征+Adaboost传统特征:LBP/HOG/Harr图片原始的RGB信息,维度太高,计算量过大,且不具备鲁棒性,即光照和旋转,对RGB信息影响非常大。

利用LBP得到二进制值,再转换成十进制:Technology-MachineLearning-FaceRegonition-LBP效果图:Technology-MachineLearning-FaceRegonition-LBP-ExampleAdaboost由于移动设备对计算速度有一定要求,所以用多个弱分类器加权叠加来完成一个强分类器,从而保证速度。

Technology-MachineLearning-FaceRegonition-Adaboost深度学习特征的选取是比较复杂的,可能需要大量的统计学和生物学知识积累,而深度学习不需要选择特征,这是其很大优势,另外通过GPU代替CPU等方式,可以得到一个更好的效果。

Technology-MachineLearning-FaceRegonition-DeepLeaning-Example关键点检测、跟踪传统算法Cascaderegression/ESR/SDM传统算法步骤:根据人脸检测的框位置,先初始化初始脸部轮廓位置;进行上一步位置和图形特征检测下一步位置(一般是迭代残差);进行迭代,最终得到相对准确的轮廓位置。

Technology-MachineLearning-FaceRegonition-KeyPoints深度学习深度学习算法步骤:对图像进行轮廓定位态校正;全局粗定位;局部精细定位。

作者:YI_LIN来源:简书。

深度神经网络具体的工作流程是什么样的?

第一,深度神经网络不是黑盒,个人电脑开机直到神经网络运行在内存中的每一比特的变化都是可以很细微的观察的rbsci。没有任何神秘力量,没有超出科学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值