SpringAI(GA):Neo4j向量数据库存储快速上手

[!TIP]
Neo4j 是一个开源的 NoSQL 图形数据库,是一个完全事务的数据库,存储结构由节点组成的图形的数据,并通过关系连接

实战代码可见:https://github.com/GTyingzi/spring-ai-tutorial 下的 vector/vector-neo4j 模块

Neo4j 安装

neo4j 官网:https://neo4j.com/download/

方便起见可以使用 neo4j Desktop 版

Graph DBMS 命名随意,password 密码需要记住,这里密码改为 yingzipassword

Spring AI 连接 Neo4j

pom 依赖
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-autoconfigure-model-openai</artifactId>
    </dependency>

    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-vector-store</artifactId>
    </dependency>

    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-vector-store-neo4j</artifactId>
    </dependency>

</dependencies>
application.yml
server:
  port: 8080

spring:
  application:
    name: vector-neo4j

  ai:
    openai:
      api-key: ${DASHSCOPEAPIKEY}
      base-url: https://dashscope.aliyuncs.com/compatible-mode
      embedding:
        options:
          model: text-embedding-v1
    vectorstore:
      neo4j:
        initialize-schema: true
        database-name: neo4j
        index-name: yingziindex
        embedding-dimension: 1536
        distance-type: cosine

  neo4j:
    uri: bolt://localhost:7687
    authentication:
      username: neo4j
      password: yingzipassword
Neo4jConfig
package com.spring.ai.tutorial.vector.config;

import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;
import org.neo4j.driver.GraphDatabase;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.embedding.TokenCountBatchingStrategy;
import org.springframework.ai.vectorstore.neo4j.Neo4jVectorStore;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * @author yingzi
 * @since 2025/9/8
 */
@Configuration
public class Neo4jConfig {

    private static final Logger logger = LoggerFactory.getLogger(Neo4jConfig.class);


    @Value("${spring.neo4j.uri}")
    private String uri;
    @Value("${spring.neo4j.authentication.username}")
    private String username;
    @Value("${spring.neo4j.authentication.password}")
    private String password;

    @Value("${spring.ai.vectorstore.neo4j.database-name}")
    private String databaseName;
    @Value("${spring.ai.vectorstore.neo4j.distance-type}")
    private Neo4jVectorStore.Neo4jDistanceType distanceType;
    @Value("${spring.ai.vectorstore.neo4j.index-name}")
    private String indexName;
    @Value("${spring.ai.vectorstore.neo4j.initialize-schema}")
    private boolean initializeSchema;
    @Value("${spring.ai.vectorstore.neo4j.embedding-dimension}")
    private int embeddingDimension;


    @Bean
    public Driver driver() {
        return GraphDatabase.driver(uri,
                AuthTokens.basic(username, password));
    }

    @Bean(name = "neo4jVectorStore")
    public Neo4jVectorStore vectorStore(Driver driver, EmbeddingModel embeddingModel) {
        logger.info("create neo4j vector store");

        return Neo4jVectorStore.builder(driver, embeddingModel)
                .databaseName(databaseName)                // Optional: defaults to "neo4j"
                .distanceType(distanceType) // Optional: defaults to COSINE
                .embeddingDimension(embeddingDimension)                      // Optional: defaults to 1536
                .label("Document")                     // Optional: defaults to "Document"
                .embeddingProperty("embedding")        // Optional: defaults to "embedding"
                .indexName(indexName)             // Optional: defaults to "spring-ai-document-index"
                .initializeSchema(initializeSchema)                // Optional: defaults to false
                .batchingStrategy(new TokenCountBatchingStrategy()) // Optional: defaults to TokenCountBatchingStrategy
                .build();
    }
}
Neo4jController
package com.spring.ai.tutorial.vector.controller;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.document.Document;
import org.springframework.ai.vectorstore.SearchRequest;
import org.springframework.ai.vectorstore.filter.Filter;
import org.springframework.ai.vectorstore.filter.FilterExpressionBuilder;
import org.springframework.ai.vectorstore.neo4j.Neo4jVectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * @author yingzi
 * @since 2025/9/8
 */
@RestController
@RequestMapping("/vector/neo4j")
public class Neo4jController {

    private static final Logger logger = LoggerFactory.getLogger(Neo4jController.class);
    private final Neo4jVectorStore neo4jVectorStore;

    @Autowired
    public Neo4jController(@Qualifier("neo4jVectorStore") Neo4jVectorStore neo4jVectorStore) {
        this.neo4jVectorStore = neo4jVectorStore;
    }

    @GetMapping("/add")
    public void add() {
        logger.info("start import data");

        HashMap<String, Object> map = new HashMap<>();
        map.put("id", "12345");
        map.put("year", 2025);
        map.put("name", "yingzi");
        List<Document> documents = List.of(
                new Document("The World is Big and Salvation Lurks Around the Corner"),
                new Document("You walk forward facing the past and you turn back toward the future.", Map.of("year", 2024)),
                new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", map));
        neo4jVectorStore.add(documents);
    }

    @GetMapping("/search")
    public List<Document> search() {
        logger.info("start search data");
        return neo4jVectorStore.similaritySearch(SearchRequest
                .builder()
                .query("Spring")
                .topK(2)
                .build());
    }

    @GetMapping("delete-filter")
    public void deleteFilter() {
        logger.info("start delete data with filter");
        FilterExpressionBuilder b = new FilterExpressionBuilder();
        Filter.Expression expression = b.and(
                b.in("year", 2025, 2024),
                b.eq("name", "yingzi")
        ).build();

        neo4jVectorStore.delete(expression);
    }
}
效果

添加数据到 neo4j

查询 neo4j 中的数据

删除数据

往期资料

Spring AI + Spring Ai Aliabba系统化学习资料

本教程将采用2025年5月20日正式的GA版,给出如下内容

  1. 核心功能模块的快速上手教程
  2. 核心功能模块的源码级解读
  3. Spring ai alibaba增强的快速上手教程 + 源码级解读

版本:

  • JDK21
  • SpringBoot3.4.5
  • SpringAI 1.0.1
  • SpringAI Alibaba 1.0.3+

免费渠道:

  1. 为Spring Ai Alibaba开源社区解决解决有效的issue or 提供有价值的PR,可免费获取上述教程
  2. 往届微信推文

收费服务:收费69.9元

  1. 飞书在线云文档
  2. Spring AI会员群教程代码答疑

学习交流圈

你好,我是影子,曾先后在🐻、新能源、老铁就职,兼任Spring AI Alibaba开源社区的Committer。

目前新建了一个交流群,一个人走得快,一群人走得远,另外,本人长期维护一套飞书云文档笔记,涵盖后端、大数据系统化的面试资料,可私信免费获取

如果您有学业规划、职场进阶的困扰欢迎咨询,我将站在我现有的理解给出最真诚的建议;同时欢迎投稿分享您的真实经历与思考,无论是逆袭故事还是曾经踩过的坑,一经采用将支付稿费,让您的的经验能让更多人受益

我也将有偿提供如下服务

  • 1 vs 1 升学、职业 咨询:300 / h

  • 简历修改:200元 / 份

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值