≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(八)

本文探讨了平滑样条与子波分析的基本原理和技术应用。详细介绍了平滑样条的目标函数及其最小化过程,并证明了最优解为分段三次多项式。此外,还阐述了子波分析中的函数平移、缩放、正交性及完备性等关键概念。

平滑splines

有数据集D={(xi,yi),1iN}

,然后定义目标函数Ni=1(yif(xi))2+λbaf′′(x)2dx

,记为(1)

式。然后我们有如下结论:使(1)最小化的解一定是分段三次多项式。

证明如下。

F

为函数族a=x0<<xn<xn+1=b上的分段三次多项式(splines),且在首尾两段[x0,x1][xn,xn+1]上是一次多项式,那么他一定有4(N1)+223N=N

的自由度。

fF

,则当x[x0,x1],x[xn,xn+1]时,有f′′(x)=0

(2) 我们设g(x)

也是(1)式的解,则下面证明一定能找到f使得目标函数比g(x)小,则fF

,

f(xi)=g(xi),1iN

.

(3)记h(x)=g(x)f(x)

,则h(xi)=0,1iN

(4) 下面我们证明,h′′(x)f′′

(两者内积为0),即bah′′(x)f(x)′′dx=0

bah′′(x)f(x)′′dx=baf(x)′′dh(x)=f(x)′′h(x)ba0bah(x)df(x)′′

bah(x)df(x)′′=[x1a+N1i=1xi+1xi+bXN]=x1ah(x)f(x)′′′dxbXNh(x)f(x)′′′dxxi+1xih(x)f(x)′′′constantdx00=f(x)′′′xi+1xih(x)dx0

所以得到h′′(x)f′′

(5)有了上述结论后,我们有g(x)=f(x)+h(x)g′′(x)=f(x)′′+h′′(x)

,然后有g′′(x)2=f(x)′′+h′′(x)2=f(x)′′2+h′′(x)2f(x)′′2

,所以对于所有的g,我们都有其二阶导数的范数小于f的二阶导数的范数,故在(1)式中代入g总比代入f大(或者相等)。这样我们就把一个无限维的最优化问题变为了有限维。

子波分析

1. 函数的平移与缩放

平移:fk(x)=f(xk)

缩放:fd(x)=2df(2dx)

组合起来就是fdk(x)=2df(2dxk)

。由此,对于每个d,我们可以定义一个函数族Fd:{fdk(x),kZ}

,写成矩阵形式就是

d2101221k0f00(x)1f11(x)2Fd

2. Hoar函数

(1)定义: h(x)={010x1else

(2)Hoar函数的平滑与缩放。定义Hoar函数族为Hd:{hdk(x),kZ}

,

dZ

。这样我们每个Hd

为一组(胖瘦一样)。

定理1(正交):Hd

L2(R)平方可积函数的一个正交基,即对于任意的kg,有<hdk(x),hdg(x)>=hdkhdgdx=0

定理2(增长):随着d的增加,Hd

张成的闭子空间逐渐增大,且Hd¯¯¯¯¯¯¯Hd+r¯¯¯¯¯¯¯¯¯¯¯。这样,d比较小的函数一定能用d比较大的函数(正交基)来表示,比如h00(x)=h10(x)+h11(x)/2

。直观的理解就是,d越大,分辨率越高。

定理3(完备):Hd¯¯¯¯¯¯¯L2(R)

(3)定义ωd

,使ωd=Hd+1Hd,或者Hd+1=ωdHd

(4)定义w(x)=1100x1212x1else

,然后wdk(x)=2dw(2dxk),k,dZ

定理4:函数族ωd:{wdk(x),kZ}

,dZ,则dωd=L2(R)亦为完备基,且ωdωd?,如果dd。也就是说,Hd+1¯¯¯¯¯¯¯¯¯¯¯Hd¯¯¯¯¯¯¯

之间的空间随着d的增加,彼此正交,且所有的叠起来之后亦为完备空间。

如此,我们称w(x)

为子波(mother)而h(x)

为father函数。注意,这里Hoar函数非连续。

在更一般的场合,我们寻找f(x)

为father函数,然后定义Fd:{fdk(x),kZ},满足<fdk(x),fdg(x)>=0(正交),且Fd¯¯¯¯¯¯¯Fd+r¯¯¯¯¯¯¯¯¯¯¯(增长),Fd¯¯¯¯¯¯¯L2(R)

(完备)。

再寻找mother函数g(x)

满足<gdk(x),gdg(x)>=0(同层次内正交)、Fd+1=GdFd(相邻层次正交补)和dGd=L2(R)

完备。

这样的f(x)

g(x)

到底存不存在呢?实证结论是存在,而且很多,不过坏消息是他们的形式都不算简单。

spline和子波分析

spline和子波分析都提供了一组线性基底,其线性组合可以定义函数类。由此,我们可以定义广义线性模型的函数族,为统计学习模型的函数族做约束。

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值