Sumdiv
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 13959 | Accepted: 3433 |
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
Source
思路看:
http://hi.baidu.com/necsinmyway/item/9f10b6d96c5068fbb2f77740
AC代码:
#include<iostream>
using namespace std;
#define LL long long
LL pow_mod(LL a,LL n,int mod){ //快速幂
LL r=1;
LL base=a;
while(n){
if(n&1)
r=r*base%mod;
base=base*base%mod;
n>>=1;
}
return r%9901;
}
LL sum(LL a,LL b,LL mod){ //二分求等比数列前N项和
if(b==0)
return 1;
if(b%2==1)
return (sum(a,b/2,mod)*(pow_mod(a,b/2+1,mod)+1))%mod;
else
return (sum(a,b-1,mod)+pow_mod(a,b,mod))%mod;
}
int main(){
LL a,b;
LL ans;
while(cin>>a>>b){
ans=1;
for(LL i=2;i*i<=a;i++){ //将a分解为质数的乘积
if(a%i==0){
LL s=0;
while(a%i==0){
s++;
a/=i;
}
ans=ans*sum(i%9901,b*s,9901)%9901;
}
}
if(a>=2){
ans=ans*sum(a%9901,b,9901)%9901;
}
cout<<ans<<endl;
}
return 0;
}
本文针对Sumdiv问题进行了详细的解析,该问题是求两个自然数A和B的所有自然数因子之和S,并计算S对9901取模的结果。输入包含两个自然数A和B,输出为S对9901取模后的结果。文章提供了AC代码,采用快速幂运算及等比数列求和的方法来高效解决此问题。
3万+

被折叠的 条评论
为什么被折叠?



