Problem Description
We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array.
We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,…,an, is it almost sorted?
Input
The first line contains an integer T indicating the total number of test cases. Each test case starts with an integer n in one line, then one line with n integers a1,a2,…,an.
1≤T≤2000
2≤n≤105
1≤ai≤105
There are at most 20 test cases with n>1000.
Output
For each test case, please output “YES
” if it is almost sorted. Otherwise, output “NO
” (both without quotes).
Sample Input
3
3
2 1 7
3
3 2 1
5
3 1 4 1 5
Sample Output
YES
YES
NO
题意:给你一段长度为n的序列,问你去掉一个数字后,剩下的序列是否处于排好序的状态。
题解:显然,我们可以直接求最长不上升和不下降子序列,若答案大于等于n-1,则满足条件。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[100000+10];
int b[100000+10];
int dp[100000+10];
int find(int l,int r,int x)
{
int ans=r;
while(l<=r)
{
int mid=(l+r)/2;
if(dp[mid]<=x)
{
l=mid+1;
}
else
{
r=mid-1;
ans=min(ans,mid);
}
}
return ans;
}
int n;
int solve()
{
memset(dp,0,sizeof(dp));
int len=1;
dp[len]=a[1];
for(int i=2; i<=n; i++)
{
if(a[i]>=dp[len])
{
len++;
dp[len]=a[i];
}
else
{
int pos=find(1,len,a[i]);
dp[pos]=a[i];
}
}
//cout<<len<<endl;
return len;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
bool flag=0;
if(solve()>=n-1)
{
flag=1;
}
for(int i=1;i<=n;i++)
{
a[i]=b[n-i+1];
}
if(solve()>=n-1)
{
flag=1;
}
if(flag)
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return 0;
}