HDU 5532 Almost Sorted Array(最长不上升||不下降子序列)

本文介绍了一种算法,用于判断给定的序列在移除一个元素后是否能变为有序。通过计算最长不上升和不下降子序列的长度,如果长度大于等于n-1,则序列满足条件。文章提供了一个C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array.

We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,…,an, is it almost sorted?

Input
The first line contains an integer T indicating the total number of test cases. Each test case starts with an integer n in one line, then one line with n integers a1,a2,…,an.

1≤T≤2000
2≤n≤105
1≤ai≤105
There are at most 20 test cases with n>1000.

Output
For each test case, please output “YES” if it is almost sorted. Otherwise, output “NO” (both without quotes).

Sample Input
3
3
2 1 7
3
3 2 1
5
3 1 4 1 5

Sample Output
YES
YES
NO

题意:给你一段长度为n的序列,问你去掉一个数字后,剩下的序列是否处于排好序的状态。

题解:显然,我们可以直接求最长不上升和不下降子序列,若答案大于等于n-1,则满足条件。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[100000+10];
int b[100000+10];
int dp[100000+10];
int find(int l,int r,int x)
{
    int ans=r;
    while(l<=r)
    {
        int mid=(l+r)/2;
        if(dp[mid]<=x)
        {
            l=mid+1;
        }
        else
        {
            r=mid-1;
            ans=min(ans,mid);
        }
    }
    return ans;
}
int n;
int solve()
{
    memset(dp,0,sizeof(dp));
    int len=1;
    dp[len]=a[1];
    for(int i=2; i<=n; i++)
    {
        if(a[i]>=dp[len])
        {
            len++;
            dp[len]=a[i];
        }
        else
        {
            int pos=find(1,len,a[i]);
            dp[pos]=a[i];
        }
    }
    //cout<<len<<endl;
    return len;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
            b[i]=a[i];
        }
        bool flag=0;
        if(solve()>=n-1)
        {
            flag=1;
        }
        for(int i=1;i<=n;i++)
        {
            a[i]=b[n-i+1];
        }
        if(solve()>=n-1)
        {
            flag=1;
        }
        if(flag)
        {
            printf("YES\n");
        }
        else
        {
            printf("NO\n");
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值