Theorem 1 (Schwartz, Zippel). Let
P
∈
F
[
x
1
,
x
2
,
…
,
x
n
]
{\displaystyle P\in F[x_{1},x_{2},\ldots ,x_{n}]}
P∈F[x1,x2,…,xn]
be a non-zero polynomial of total degree d ≥ 0 over a field F. Let S be a finite subset of F and let r1, r2, …, rn be selected at random independently and uniformly from S. Then
Pr [ P ( r 1 , r 2 , … , r n ) = 0 ] ≤ d ∣ S ∣ . {\displaystyle \Pr[P(r_{1},r_{2},\ldots ,r_{n})=0]\leq {\frac {d}{|S|}}.} Pr[P(r1,r2,…,rn)=0]≤∣S∣d.
即对于d阶多项式,任意随机独立从域S中取所有变量值,则所取变量值所多项式取值为零的概率不高于 d / ∣ S ∣ d/|S| d/∣S∣,当阶数d远小于域范围时,该概率可以忽略。

参考资料:
[1] https://en.wikipedia.org/wiki/Schwartz–Zippel_lemma
[2] http://www0.cs.ucl.ac.uk/staff/J.Groth/MatrixZK.pdf
Schwartz-Zippel引理指出,在有限域F上,若随机独立选取n个变量值,对于总次数为d的非零多项式P,P在这些值上的结果为零的概率不超过d/|S|。此结论对于理解多项式的随机特性至关重要。
343

被折叠的 条评论
为什么被折叠?



