题目描述
定义: 如果一个正整数能表示为两个正整数 m, n 的平方差(m-n>1),则称这个正整数为 "平方差数"。 例如, 第1个平方差数是8=32-12,第2个平方差数是12=42-22。 给定正整数a和b,问区间[a,b]内有多少个平方差数?
输入
两个由空格分开的正整数a和b。(1<=a<=b<=1000000000, b-a<=10000000)
输出
输出区间[a,b]中平方差数的个数。
样例输入 Copy
1 12
样例输出 Copy
2
代码:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdbool.h>
void sieve(int limit, bool is_prime[]) {
for (int i = 2; i <= limit; i++) {
is_prime[i] = true;
}
is_prime[0] = is_prime[1] = false;
for (int i = 2; i * i <= limit; i++) {
if (is_prime[i]) {
for (int j = i * i; j <= limit; j += i) {
is_prime[j] = false;
}
}
}
}
int sieve_list(int limit, int primes[]) {
bool *is_prime = (bool *)malloc((limit + 1) * sizeof(bool));
sieve(limit, is_prime);
int count = 0;
for (int i = 2; i <= limit; i++) {
if (is_prime[i]) {
primes[count++] = i;
}
}
free(is_prime);
return count;
}
int count_odd_primes_in_interval(long long a, long long b) {
if (a > b) return 0;
int sqrt_b = (int)sqrt(b);
int primes_size = sqrt_b + 1;
int *primes = (int *)malloc(primes_size * sizeof(int));
int num_primes = sieve_list(sqrt_b, primes);
int segment_size = b - a + 1;
bool *is_prime_segment = (bool *)malloc(segment_size * sizeof(bool));
for (int i = 0; i < segment_size; i++) {
is_prime_segment[i] = true;
}
for (int i = 0; i < num_primes; i++) {
int p = primes[i];
long long start = (a + p - 1) / p * p;
start = start < p * 2 ? p * 2 : start;
for (long long j = start; j <= b; j += p) {
is_prime_segment[j - a] = false;
}
}
if (a <= 1 && 1 <= b) {
is_prime_segment[1 - a] = false;
}
int count = 0;
long long start_x = a % 2 == 1 ? a : a + 1;
for (long long x = start_x; x <= b; x += 2) {
if (x < 2) continue;
if (is_prime_segment[x - a]) {
count++;
}
}
free(primes);
free(is_prime_segment);
return count;
}
int count_odd_prime_squares(long long a, long long b) {
long long sqrt_a = (long long)ceil(sqrt(a));
long long sqrt_b = (long long)floor(sqrt(b));
if (sqrt_a > sqrt_b) return 0;
int high_p = (int)sqrt_b;
bool *is_prime = (bool *)malloc((high_p + 1) * sizeof(bool));
sieve(high_p, is_prime);
int count = 0;
for (long long p = sqrt_a; p <= sqrt_b; p++) {
if (p < 2) continue;
if (is_prime[p] && p % 2 == 1) {
count++;
}
}
free(is_prime);
return count;
}
int main() {
long long a, b;
scanf("%lld %lld", &a, &b);
long long count_4 = b / 4 - (a - 1) / 4;
int count_4_less8 = (a <= 4 && 4 <= b) ? 1 : 0;
long long A = count_4 - count_4_less8;
if (A < 0) A = 0;
long long odd_count = ((b + 1) / 2) - (a / 2);
int odd_prime_count = count_odd_primes_in_interval(a, b);
int count_1 = (a <= 1 && 1 <= b) ? 1 : 0;
long long odd_composite_count = odd_count - odd_prime_count - count_1;
if (odd_composite_count < 0) odd_composite_count = 0;
int count_p_square = count_odd_prime_squares(a, b);
long long B = odd_composite_count - count_p_square;
if (B < 0) B = 0;
long long total = A + B;
printf("%lld\n", total);
return 0;
}
代码较长,但耗时很少。
区间内平方差数个数的算法实现





