关于np.newaxis的使用规律

本文详细解析了numpy中的np.newaxis使用方法及其如何改变数组维度。通过具体示例,展示了np.newaxis如何在数组的特定位置插入新轴,并与reshape方法进行了对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前一直困惑np.newaxis的用法,每次遇到都一脸懵逼,网上特有不少博客对它的解释,不过大多都是举一些例子,乍一看还是不知所云,摸不着规律

博客https://blog.youkuaiyun.com/lanchunhui/article/details/49725065 中提到,np.newaxis与None等价,作用就是为numpy数组增加一个轴来改变数组维度

import numpy as np
type(np.newaxis)
NoneType
np.newaxis==None
True

接下来说一下np.newaxis是如何改变数组维度的:

首先,我们知道可以通过array的shape属性得到维度信息

a=np.array([[1,2,3],[4,5,6]])
print(a.shape)
(2, 3)

通过a[np.newaxis,:]或者a[:,np.newaxis]可以改变a的维度

a[np.newaxis,:]
array([[[1, 2, 3],
        [4, 5, 6]]])
a[:,np.newaxis]
array([[[1, 2, 3]],

       [[4, 5, 6]]])

根据np.newaxis出现的位置,在a.shape的对应位置insert一个1,得到的就是改变后的shape,例如

a[np.newaxis,:].shape
(1, 2, 3)
a[:,np.newaxis].shape
(2, 1, 3)
a[:,:,np.newaxis].shape
(2, 3, 1)

当然,也可以增加更多的axis,利用这个规律可以方便算出新的shape

a[np.newaxis,:,np.newaxis,:,np.newaxis].shape
(1, 2, 1, 3, 1)

而得到的新的数组就相当于原来的数组做了一次reshape

a[np.newaxis,:,np.newaxis,:,np.newaxis]
array([[[[[1],
          [2],
          [3]]],


        [[[4],
          [5],
          [6]]]]])
a.reshape((1, 2, 1, 3, 1))
array([[[[[1],
          [2],
          [3]]],


        [[[4],
          [5],
          [6]]]]])
 
    
import numpy as np import matplotlib.pyplot as plt # 设置模拟参数 num_boids = 50 # 粒子数 max_speed = 0.03 # 最大速度 max_force = 0.05 # 最大受力 neighborhood_radius = 0.2 # 邻域半径 separation_distance = 0.05 # 分离距离 alignment_distance = 0.1 # 对齐距离 cohesion_distance = 0.2 # 凝聚距离 # 初始化粒子位置和速度 positions = np.random.rand(num_boids, 2) velocities = np.random.rand(num_boids, 2) * max_speed # 模拟循环 for i in range(1000): # 计算邻域距离 distances = np.sqrt(np.sum(np.square(positions[:, np.newaxis, :] - positions), axis=-1)) neighbors = np.logical_and(distances > 0, distances < neighborhood_radius) # 计算三个力 separation = np.zeros_like(positions) alignment = np.zeros_like(positions) cohesion = np.zeros_like(positions) for j in range(num_boids): # 计算分离力 separation_vector = positions[j] - positions[neighbors[j]] separation_distance_mask = np.linalg.norm(separation_vector, axis=-1) < separation_distance separation_vector = separation_vector[separation_distance_mask] separation[j] = np.sum(separation_vector, axis=0) # 计算对齐力 alignment_vectors = velocities[neighbors[j]] alignment_distance_mask = np.linalg.norm(separation_vector, axis=-1) < alignment_distance alignment_vectors = alignment_vectors[alignment_distance_mask] alignment[j] = np.sum(alignment_vectors, axis=0) # 计算凝聚力 cohesion_vectors = positions[neighbors[j]] cohesion_distance_mask = np.linalg.norm(separation_vector, axis=-1) < cohesion_distance cohesion_vectors = cohesion_vectors[cohesion_distance_mask] cohesion[j] = np.sum(cohesion_vectors, axis=0) # 计算总受力 total_force = separation + alignment + cohesion total_force = np.clip(total_force, -max_force, max_force) # 更新速度和位置 velocities += total_force velocities = np.clip(velocities, -max_speed, max_speed) positions += velocities # 绘制粒子 plt.clf() plt.scatter(positions[:, 0], positions[:, 1], s=5) plt.xlim(0, 1) plt.ylim(0, 1) plt.pause(0.01)
06-06
class RobustPhysicsGenerator: def __init__(self, model, data_sys): self.model = model self.data_sys = data_sys self.original_phys_params = model.phys_layer.get_weights() # 新增生成控制参数 self.alpha_base = 0.85 # 初始残差权重 self.alpha_decay = 0.995 # 指数衰减系数 self.min_alpha = 0.4 # 最小残差权重 self.smoothing_factor = 0.2 # 平滑系数 def generate(self, delta_sequence, true_psi_history, steps): # 归一化处理 delta_norm = (delta_sequence - self.data_sys.train_delta_mean) / self.data_sys.train_delta_std psi_norm = (true_psi_history - self.data_sys.train_psi_mean) / self.data_sys.train_psi_std # 初始化滑动窗口 window = np.column_stack([ delta_norm[:Config.window_size], psi_norm[-Config.window_size:] ]).astype(np.float32) generated = [] alpha = self.alpha_base # 初始残差权重 for t in range(steps): # 执行预测 X = window[np.newaxis, ...] pred = self.model.predict(X, verbose=0).flatten() pred_norm = pred[0] if len(pred) >= 1 else 0.0 # ==== 关键修改1:动态alpha计算 ==== alpha = max(self.alpha_base * (self.alpha_decay ** t), self.min_alpha) # ==== 关键修改2:带平滑的预测融合 ==== if generated: blended_pred = (alpha * pred_norm + (1 - alpha) * generated[-1]) else: blended_pred = pred_norm # ==== 关键修改3:异常值处理 ==== if abs(blended_pred) > 5.0: # 超过3σ阈值 blended_pred = 0.8 * generated[-1] + 0.2 * pred_norm # ==== 关键修改4:周期性参数重置 ==== if t % 20 == 0: # 每20步重置物理参数 self.model.phys_layer.set_weights(self.original_phys_params) # 更新窗口 new_row = np.array([ delta_norm[Config.window_size + t], blended_pred # 使用融合后的预测值 ], dtype=np.float32) window = np.vstack([window[1:], new_row]) generated.append(blended_pred) # 反归一化 generated = np.array(generated) * self.data_sys.train_psi_std + self.data_sys.train_psi_mean # 后处理:应用低通滤波 sos = butter(4, 0.2, output='sos') filtered = sosfilt(sos, generated) return filtered
03-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值